Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T03:00:49.067Z Has data issue: false hasContentIssue false

The n-dimensional approximation constatant*

Published online by Cambridge University Press:  17 April 2009

G. Szekeres
Affiliation:
School of Mathematics, The University of New South Wales, Kensington, N.S.W., 2033, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Conference in Honour of Kurt Mahler
Copyright
Copyright © Australian Mathematical Society 1984

References

[1]Adams, W.W., “The best two-dimensional Diophantine approximation constant for cubic irrationals”, Pacific J. Math. 91 (1980), 2930.CrossRefGoogle Scholar
[2]Cusick, T.W., “Estimation for Diophantine approximation constants”, J. Number Theory 12 (1980), 547556.CrossRefGoogle Scholar
[3]Davenport, H., “On a theorem of Furtwängler, J. London Math. Soc. 30 (1955), 186195.CrossRefGoogle Scholar
[4]Furtwängler, P., “Über die simultane Approximation von Irrationalzahlen”, I and II, Math. Ann. 96 (1927), 169175; 99 (1928), 71–83.CrossRefGoogle Scholar
[5]Hunter, J., “The minimum discriminant of quintic fields”, Proc. Glasgow Math. Assoc. 3 (1957), 5767.CrossRefGoogle Scholar
[6]Krass, S., “Estimates for n-dimensional Diophantine approximation constants for n > 4”, J. Number Theory, to appear.+4”,+J.+Number+Theory,+to+appear.>Google Scholar
[7]Krass, S., “Simultaneous n-dimensional Diophantine approximations of irrationals in a number field of degree n + 1”, to appear.Google Scholar
[8]Szekeres, G., “Multidimensional continued fractions”, Annales Univ. Sci. Budapest, 13 (1970), 113140.Google Scholar