We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Type
Australian Mathematical Societyt Applied Mathematics Conference
[1]Brinley, F.Jr., “Discussion report: ‘Conference on newer properties perfused squid axons’”, J. Gen. Physiol.48 (1965), no. 5, 41–47.Google Scholar
[2]
[2]Cole, Kenneth S., “Electrodiffusion models for the membrane of squid giant axon“, Physiol. Rev.45 (1965), 340–379.CrossRefGoogle ScholarPubMed
[3]
[3]Cole, Kenneth S., Membrane, ions and impulses: A chapter of classical biophysics (Biophysics Series, 1. University of California Press, Berkeley and Los Angeles, 1968).CrossRefGoogle Scholar
[4]
[4]Chandler, W.K. and Meves, H., “Sodium inactivation in internally perfused squid giant axons”, Arch. Ges. Physiol.281 (1964), 25–26.Google Scholar
[5]
[5]Goldman, David E., “Potential, impedance, and rectification in membranes”, J. Gen. Physiol.27 (1944), 37–60.CrossRefGoogle Scholar
[6]
[6]Hillie, Bertil, “Pharmacological modifications of the sodium channels of frog nerve”, J. Gen. Physiol.51 (1968), 199–220.CrossRefGoogle Scholar
[7]
[7]Hille, Bertil, “The permeability of sodium channels to organic cations in myelinated nerve”, J. Gen. Physiol.58 (1971), 599–619.CrossRefGoogle ScholarPubMed
[8]
[8]Hillie, BertiI, “Ionic channels in excitable membranes: current problems and biophysical approaches”, Biophys. J.22 (1978), 283–294.CrossRefGoogle Scholar
[9]
[9]Hodgkin, A.L., The conduction of the nervous impulse (The Sherrington Lectures, 7. Liverpool University Press, Liverpool, 1964).Google Scholar
[10]
[10]Hodgkin, A.L. and Chandler, W.K., “Effects of changes in ionic strength on inactivation and threshold in perfused nerve fibres of Loligo”, J. Gen. Physiol.48 (1965), no. 5, 27–30.CrossRefGoogle ScholarPubMed
[11]
[11]Hodgkin, A.L. and Huxley, A.F., “The components of membrane conductance in the giant axon of Loligo”, J. Physiol.116 (1952), 473–496.CrossRefGoogle ScholarPubMed
[12]
[12]Hodgkin, A.L. and Huxley, A.F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol.117 (1952), 500–544.CrossRefGoogle ScholarPubMed
[13]
[13]Katz, Bernard, Nerve, muscle, and synapse (McGraw-Hill, New York, San Francisco, Sydney, 1966).Google Scholar
[14]
[14]Mcllroy, Douglas Kenneth, “A mathematical model of the nerve impulse at the molecular level”, Math. Biosci.7 (1970), 313–328.CrossRefGoogle Scholar
[15]
[15]MelIroy, Douglas Kenneth, “Analysis of the enzyme model of the nerve”, Math. Biosci.8 (1970), 109–129.Google Scholar
[16]
[16]Mcllroy, D.K. and Mason, D.P., “Electric field dissociation of charged macromolecular sites in polarized biomembranes: III. Numerical results and application to nervous conduction”, SIAM J. Appl. Math.41 (1981), 580–591.CrossRefGoogle Scholar
[17]
[17]Nafahashl, T., “Dependence of resting and action potentials on internal potassium in perfused squid giant axons”, J. Physiol.169 (1963), 91–115.Google Scholar
[18]
[18]Planck, M., “Ueber die Erregung von Elektricät und Wärme in Elektrolyten”, Wiedemann Ann.39 (1890), 161–186.CrossRefGoogle Scholar
[19]
[19]Tasaki, Ichiji, “Permeability of squid axon membrane to various ions”, J. Gen. Physiol.46 (1963), 755–772.CrossRefGoogle ScholarPubMed