Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T22:30:06.608Z Has data issue: false hasContentIssue false

MÖBIUS–FROBENIUS MAPS ON IRREDUCIBLE POLYNOMIALS

Published online by Cambridge University Press:  14 December 2020

F. E. BROCHERO MARTÍNEZ
Affiliation:
Departamento de Matemática, Universidade Federal de Minas Gerais, UFMG, Belo HorizonteMG, 31270-901, Brazil e-mail: [email protected]
DANIELA OLIVEIRA
Affiliation:
Departamento de Matemática, Universidade Federal de Minas Gerais, UFMG, Belo HorizonteMG, 31270-901, Brazil e-mail: [email protected]
LUCAS REIS*
Affiliation:
Departamento de Matemática, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, 31270-901, Brazil

Abstract

Let n be a positive integer and let $\mathbb{F} _{q^n}$ be the finite field with $q^n$ elements, where q is a prime power. We introduce a natural action of the projective semilinear group ${\mathrm{P}\Gamma\mathrm{L}} (2, q^n)={\mathrm{PGL}} (2, q^n)\rtimes {\mathrm{Gal}} ({\mathbb F_{q^n}} /\mathbb{F} _q)$ on the set of monic irreducible polynomials over the finite field $\mathbb{F} _{q^n}$ . Our main results provide information on the characterisation and number of fixed points.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The second author was partially supported by FAPEMIG APQ-02973-17, Brazil. The third author was supported by FAPESP 2018/03038-2, Brazil.

References

Boripan, A., Jitman, S. and Udomkavanich, P., ‘Self-conjugate-reciprocal irreducible monic polynomials over finite fields’, Proc. 20th Annu. Meet. Mathematics 2015 (Silpakorn University, Nakhon Pathom, Thailand, 2015), 3443.Google Scholar
Boripan, A., Jitman, S. and Udomkavanich, P., ‘Self-conjugate-reciprocal irreducible monic factors of ${x}^n-1$ over finite fields and their applications’, Finite Fields Appl. 55 (2019), 7896.CrossRefGoogle Scholar
Garefalakis, T., ‘On the action of $\mathrm{GL}(2,q)$ on irreducible polynomials over ${F}_q$ ’, J. Pure Appl. Algebra 215 (2011), 18351843.CrossRefGoogle Scholar
Mattarei, S. and Pizzato, M., ‘Generalizations of self-reciprocal polynomialsFinite Fields Appl. 48 (2017), 271288.CrossRefGoogle Scholar
Meyn, H. and Götz, W., ‘Self-reciprocal polynomials over finite fields’, Publ. Inst. Rech. Math. Av. 413(21) (1990), 8290.Google Scholar
Reis, L., ‘The action of ${\mathrm{GL}}_2({F}_q)$ on irreducible polynomials over ${F}_q$ , revisited’, J. Pure Appl. Algebra 222 (2018), 10871094.CrossRefGoogle Scholar
Stichtenoth, H. and Topuzoğlu, A., ‘Factorization of a class of polynomials over finite fields’, Finite Fields Appl. 18 (2012), 108122.CrossRefGoogle Scholar