Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T22:58:01.808Z Has data issue: false hasContentIssue false

MIXING IT UP: NEW METHODS FOR FINITE MIXTURE MODELLING OF MULTI-SPECIES DATA IN ECOLOGY

Published online by Cambridge University Press:  12 November 2015

FRANCIS K. C. HUI*
Affiliation:
School of Mathematics and Statistics, Faculty of Science, CSIRO Digital Productivity Flagship, University of New South Wales, Sydney, NSW 2052, Australia email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Hui, F. K. C., Taskinen, S., Pledger, S., Foster, S. D. and Warton, D. I., ‘Model-based approaches to unconstrained ordination’, Methods Ecol. Evol. 6 (2015), 399411.CrossRefGoogle Scholar
Hui, F. K. C., Warton, D. I. and Foster, S. D., ‘Tuning parameter selection for the adaptive lasso using ERIC’, J. Amer. Statist. Assoc. 110 (2015), 262269.CrossRefGoogle Scholar
Hui, F. K. C., Warton, D. I. and Foster, S. D., ‘Order selection in finite mixture models: complete or observed likelihood information criteria?’, Biometrika (2015), doi:10.1093/biomet/asv027.CrossRefGoogle Scholar
Hui, F. K. C., Warton, D. I. and Foster, S. D., ‘Multi-species distribution modeling using penalized mixture of regressions’, Ann. Appl. Stat. 9(2) (2015), 866882.CrossRefGoogle Scholar
Hui, F. K. C., Warton, D. I., Foster, S. D. and Dunstan, P. K., ‘To mix or not to mix: comparing the predictive performance of mixture models versus separate species distribution models’, Ecology 94 (2013), 19131919.CrossRefGoogle ScholarPubMed