Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T02:53:39.291Z Has data issue: false hasContentIssue false

A method of Mahler in transcendence theory and some of its applications*

Published online by Cambridge University Press:  17 April 2009

J.H. Loxton
Affiliation:
School of Mathematics, University of New South Wales, Kensington, N.S.W., 2033, AUSTRALIA.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Conference in Honour of Kurt Mahler
Copyright
Copyright © Australian Mathematical Society 1984

References

[1]Bayer, W.A., Metropolis, N. and Neergard, J.R., “Statistical study of the digits of some square roots of integers in various bases”, Math. Comp. 24 (1970), 455473.CrossRefGoogle Scholar
[2]Cijsouw, P.L. and Tijdeman, R., “On the transcendence of certain power series of algebraic numbers”, Acta Arith. 23 (1973), 301305.CrossRefGoogle Scholar
[3]Cobham, A., “On the base dependence of sets of numbers recognised by finite automata”, Math. Systems Theory 3 (1969), 186192.CrossRefGoogle Scholar
[4]Cobham, A., “Uniform Tag sequences”, Math. Systems Theory 6 (1972), 164192.CrossRefGoogle Scholar
[5]Dekking, M., France, M. Mendès and Poorten, A. van der, “Folds!”, Mathematical Intelligencer 4 (1982), 130138, 173–180 and 190–195.CrossRefGoogle Scholar
[6]Guilloud, J. and Bouyer, M., “1,000,000 de decimales de π”, (Commissariat à I 'energie Atomique, 1974).Google Scholar
[7]Knuth, D., The art of computer -programming: Volume 2 (Addison-Wesley, 1969).Google Scholar
[8]Lang, S., Elliptic curves, diophantine analysis (Springer, 1978).CrossRefGoogle Scholar
[9]Loxton, J.H. and Poorten, A.J. van der, “Transcendence and algebraic independence by a method of Mahler”. In Transcendence theory: advances and applications, A. Baker and D.W. Masser (Academic Press, 1977), 211226.Google Scholar
[10]Loxton, J.H. and Poorten, A.J. van der, “Arithmetic properties of the solutions of a class of functional equations”, J. reine angew. Math. 330 (1982), 159172.Google Scholar
[11]Mahler, K., “Fifty years as a mathematician”, J. Number Theory, 14 (1982), 121155.CrossRefGoogle Scholar
[12]Stoneham, R.G., “A study of 60,000 digits of the transcendental”e”.” Amer. Math. Monthly 72 (1965), 483500.Google Scholar
[13]Stoneham, R.G., “On the uniform ∈-distribution of residues within the periods of rational numbers with applications to normal numbers”, Acta Arith. 22 (1973), 371389.CrossRefGoogle Scholar