Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-04-25T13:19:19.107Z Has data issue: false hasContentIssue false

LOWER BOUNDS FOR THE MAHLER MEASURE AND INERTIA DEGREES OF PRIMES

Published online by Cambridge University Press:  02 December 2024

SHANTA LAISHRAM
Affiliation:
Indian Statistical Institute, New Delhi 110016, India e-mail: [email protected]
GOREKH PRASAD*
Affiliation:
Harish-Chandra Research Institute, A CI of Homi Bhaba National Institute, Prayagraj 211019, India

Abstract

We investigate the relationship between lower bounds for the Mahler measure and splitting of primes, and prove various lower bounds for the Mahler measure of algebraic integers in terms of the least common multiples of all inertia degrees of primes. The results generalise work of the second author and Kumar [‘Lehmer’s problem and splitting of rational primes in number fields’, Acta Math. Hungar. 169(2) (2023), 349–358].

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The first author acknowledges the support of a SERB CRG Grant while working during the project.

References

Dobrowolski, E., ‘On a question of Lehmer and the number of irreducible factors of a polynomial’, Acta Arith. 34(4) (1979), 391401.CrossRefGoogle Scholar
Feit, W. and Seitz, G. M., ‘On finite rational groups and related topics’, Illinois J. Math. 33(1) (1989), 103131.CrossRefGoogle Scholar
Garza, J., ‘The Lehmer strength bounds for total ramification’, Acta Arith. 137(2) (2009), 171176.CrossRefGoogle Scholar
Kronecker, L., ‘Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten’, J. reine angew. Math. 53 (1857), 173175.Google Scholar
Lehmer, D. H., ‘Factorization of certain cyclotomic functions’, Ann. of Math. (2) 34(3) (1933), 461479.CrossRefGoogle Scholar
Mignotte, M., ‘Entiers algébriques dont les conjugués sont proches du cercle unité’, Sém. Delange-Pisot-Poitou, Théor. Nombres 19(2) (1977–78), Article no. 39, 6 pages.Google Scholar
Prasad, G., ‘Height of algebraic units under splitting conditions’, Proc. Indian Acad. Sci. Math. Sci. 133(2) (2023), Article no. 16, 9 pages.CrossRefGoogle Scholar
Prasad, G. and Kumar, K. S., ‘Lehmer’s problem and splitting of rational primes in number fields’, Acta Math. Hungar. 169(2) (2023), 349358.CrossRefGoogle Scholar
Smyth, C. J., ‘On the product of the conjugates outside the unit circle of an algebraic integer’, Bull. Lond. Math. Soc. 3 (1971), 169175.CrossRefGoogle Scholar
Voutier, P., ‘An effective lower bound for the height of algebraic numbers’, Acta Arith. 74(1) (1996), 8195.CrossRefGoogle Scholar
Waldschmidt, M., Diophantine Approximation on Linear Algebraic Groups (Springer, Berlin, 2000).CrossRefGoogle Scholar