Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T00:11:51.271Z Has data issue: false hasContentIssue false

LORENTZIAN GEOMETRY AND PHYSICS IN KASPAROV’S THEORY

Published online by Cambridge University Press:  21 January 2016

KOEN VAN DEN DUNGEN*
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Boeijink, J. and van den Dungen, K., ‘On globally non-trivial almost-commutative manifolds’, J. Math. Phys. 55(10) 103508 (2014).Google Scholar
Baaj, S. and Julg, P., ‘Théorie bivariante de Kasparov et opérateurs non bornés dans les C -modules hilbertiens’, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), 875878.Google Scholar
Connes, A., Noncommutative Geometry (Academic Press, San Diego, CA, 1994).Google Scholar
van den Dungen, K., Paschke, M. and Rennie, A., ‘Pseudo-Riemannian spectral triples and the harmonic oscillator’, J. Geom. Phys. 73 (2013), 3755.Google Scholar
van den Dungen, K. and Rennie, A., ‘Indefinite Kasparov modules and pseudo-Riemannian manifolds’, arXiv:1503.06916 (2015).Google Scholar
van den Dungen, K., ‘Krein spectral triples and the fermionic action’, arXiv:1505.01939 (2015).Google Scholar
Kasparov, G. G., ‘The operator K-functor and extensions of C -algebras’, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 571636.Google Scholar