No CrossRef data available.
Article contents
LORENTZIAN GEOMETRY AND PHYSICS IN KASPAROV’S THEORY
Part of:
Classical field theories
Global differential geometry
Infinite-dimensional manifolds
$K$-theory and operator algebras
Published online by Cambridge University Press: 21 January 2016
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Abstracts of Australasian PhD Theses
- Information
- Copyright
- © 2016 Australian Mathematical Publishing Association Inc.
References
Boeijink, J. and van den Dungen, K., ‘On globally non-trivial almost-commutative manifolds’, J. Math. Phys. 55(10) 103508 (2014).Google Scholar
Baaj, S. and Julg, P., ‘Théorie bivariante de Kasparov et opérateurs non bornés dans les C ∗ -modules hilbertiens’, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), 875–878.Google Scholar
van den Dungen, K., Paschke, M. and Rennie, A., ‘Pseudo-Riemannian spectral triples and the harmonic oscillator’, J. Geom. Phys. 73 (2013), 37–55.Google Scholar
van den Dungen, K. and Rennie, A., ‘Indefinite Kasparov modules and pseudo-Riemannian manifolds’, arXiv:1503.06916 (2015).Google Scholar
van den Dungen, K., ‘Krein spectral triples and the fermionic action’, arXiv:1505.01939 (2015).Google Scholar
Kasparov, G. G., ‘The operator K-functor and extensions of C ∗ -algebras’, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 571–636.Google Scholar
You have
Access