Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T12:55:42.206Z Has data issue: false hasContentIssue false

Local homeo- and diffeomorphisms: invertibility and convex image

Published online by Cambridge University Press:  17 April 2009

Gaetano Zampieri
Affiliation:
Dipartimento di Matematica Pura eApplicata Università di Padovavia Belzoni 7 35131 PadovaItaly e-mail: [email protected]
Gianluca Gorni
Affiliation:
Dipartimento di Matematica eInformatica Università di Udinevia Zanon 6 33100 UdineItaly e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a necessary and sufficient condition for a local homeomorphism defined on an open, connected subset of a Euclidean space to be globally one-to-one and, at the same time, for the image to be convex. Among the applications we give a practical sufficiency test for invertibility for twice differentiable local diffeomorphisms defined on a ball.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Banach, S. and Mazur, S., ‘Über mehrdeutige stetige Abbildungen’, Studia. Math. 5 (1934), 174178.CrossRefGoogle Scholar
[2]Browder, F., ‘Covering spaces, fiber spaces and local homeomorphisms’, Duke Math. J. 21 (1954), 329336.CrossRefGoogle Scholar
[3]Caccioppoli, R., ‘Sugli elementi uniti delle trasformazioni funzionali’, Rend. Sem. Mat.Univ. Padova 3 (1932), 115.Google Scholar
[4]Duren, P.L., Univalent Functions (Springer-Verlag, Berlin, Heidelberg, New York, 1983).Google Scholar
[5]Gordon, W.B., ‘The existence of geodesies joining two given points’, J. Differential Geom. 9 (1974), 443450.CrossRefGoogle Scholar
[6]Gorni, G., ‘A criterion of invertibility in the large for local diffeomorphisms between Banach spaces’, Nonlinear Anal. 21 (1993), 4347.CrossRefGoogle Scholar
[7]Hadamard, J., ‘Sur les transformations ponctuelles’, Bull. Soc. Math. France 34 (1906), 7184.CrossRefGoogle Scholar
[8]Levy, M.P., ‘Sur le fonctions de ligne implicites’, Bull. Soc. Math. France 48 (1920), 1327.CrossRefGoogle Scholar
[9]Meisters, G.H. and Olech, C., ‘Global stability, injectivity, and the Jacobian conjecture’, in, Proc. of the First World Congress of Nonlinear Analysts, (Lakshmikantham, Editor) (Tampa, Florida, 1992) (to appear).Google Scholar
[10]Parthasarathy, T., On global univalence theorems, Lecture Notes in Math. 977 (Springer Verlag, Berlin, Heidelberg, New York, 1983).CrossRefGoogle Scholar
[11]Rheinboldt, W.C., ‘Local mapping relations and global implicit function theorems’, Trans.Amer. Math. Soc. 138 (1969), 183198.CrossRefGoogle Scholar
[12]Sotomayor, J., ‘Inversion of smooth mappings’, Z. Angew. Math. Phys. 41 (1990), 306310.CrossRefGoogle Scholar
[13]Ważewski, T., ‘Sur l'evaluation du domain d'existence de fonctions implicites réelles ou complexes’, Ann. Soc. Math. Polon. 20 (1947), 81120.Google Scholar
[14]Zampieri, G., ‘Finding domains of invertibility for smooth functions by means of attraction basins’, J. Differential Equations 104 (1993), 1119.CrossRefGoogle Scholar
[15]Zampieri, G., ‘Diffeomorphisms with Banach space domains’, Nonlinear Anal. 19 (1992), 923932.CrossRefGoogle Scholar
[16]Zampieri, G. and Gorni, G., ‘On the Jacobian conjecture for global asymptotic stability’, J. Dynamics Diff. Eq. 4 (1992), 4355.CrossRefGoogle Scholar