Published online by Cambridge University Press: 17 April 2009
A review of the development of estimates for Lebesgue constants associated with Lagrange interpolation on the one hand, and estimates for the rate of convergence of Hermite-Fejér interpolation on the other hand, provides a historical perspective for the following surprising, close link between these apparently diverse concepts. Denoting by Λn (T) the Lebesgue constant of order n and by Δn (T) the maximum interpolation error for functions of class Lip 1 by Hexmite-Fejér interpolation polynomials of degree not exceeding 2n − 1, based on the zeros of the Chebyshev polynomial of first kind, we discover that, for even values of n, Λn(T) = n Δn(T).