Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-18T15:23:57.117Z Has data issue: false hasContentIssue false

The limit-point and limit-circle classification of the Sturm-Liouville operator (py′)′ + qy

Published online by Cambridge University Press:  17 April 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. theses
Copyright
Copyright © Australian Mathematical Society 1974

References

[1]Brinck, Inge, “Self-adjointness and spectra of Stunn-Liouville operators”, Math. Sound. 7 (1959), 219239.Google Scholar
[2]Dunford, Nelson and Schwartz, Jacob T., Linear operators, Part II (Interscience [John Wiley & Sons], New York, London, 1963).Google Scholar
[3]Hartman, Philip, “The number of L2-solutions of x″ + q(t)x = 0 ″”, Amer. J. Math. 73 (1951), 635645.CrossRefGoogle Scholar
[4]Исмагилов, P.C. [R.S. Ismagilov], “Обусловиях самосопряженности дифференциалъных операторов высшвго порядка” [Conditions for self-adjointness of differential equations of higher order], Dokl. Akad. Nauk SSSR 142 (1962), 12391242.Google ScholarPubMed
[5]Sears, D.B., “Hote on the uniqueness of the Green's functions associated with certain differential equations”, Canad. J. Math. 2 (1950), 314325.CrossRefGoogle Scholar