Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T09:40:31.775Z Has data issue: false hasContentIssue false

Lattice coverings and the diagonal group

Published online by Cambridge University Press:  17 April 2009

G. Ramharter
Affiliation:
Institut für Analysis, Techn. Universität Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let M be any bounded set in n-dimensional Euclidean space. Then almost all n-dimensional lattices L with determinant 1 have the following property: There exists a diagonal transformation D with determinant 1 (depending on L) such that L does not cover space with DM. Moreover, if M has non-empty interior, the exceptional (null-) set contains at least enumerably many diagonally non-equivalent lattices.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Bambah, R.P., “Geometry of Numbers, packing and covering and discrete geometry”, Math. Student 39 (1971), 117129.Google Scholar
[2]Birch, B.J., and Swinnerton-Dyer, H.P.F., “On the inhomogeneous minimum of the product of linear forms”, Mathematika 3 (1956), 2539.CrossRefGoogle Scholar
[3]Bullig-Bergmann, B., “Ein periodisches Verfahren zur Berechnung eines Systems von Grundeinheiten in den total reellen kubischen Körpern”, Abh. Math. Sem. Univ. Hamburg 12 (1938), 369414.CrossRefGoogle Scholar
[4]Bullig-Bergmann, B., “Zur Kettenbruchtheorie im Dreidimensionalen”, Abh. Math. Sem. Univ. Hamburg 13 (1940), 321343.CrossRefGoogle Scholar
[5]Bullig-Bergmann, B., “Zur Kettenbruchtheorie im n-Dimensionalen”, Math. Ann. (1941), 131.CrossRefGoogle Scholar
[6]Bullig-Bergmann, B., “Periodische Ketten linearer Transformationen”, J. Reine Angew. Math. (1953), 108124.CrossRefGoogle Scholar
[7]Gruber, P.M., “Geometry of Numbers”, in Contributions to Geometry,(Proceedings of the Geometry Symposium in Siegen1978, Tölke, J. and Wills, J.M., Eds., Birkhäuser, Basel. 1979), 186225.Google Scholar
[8]Gruber, P.M., & Ramharter, G., “Beiträge zum Umkehrproblem für den Minkowskischen Linearformensatz”, Act. Math. Acad. Sci. Hungar. 39 (1–3) (1982), 135141.CrossRefGoogle Scholar
[9]Hammer, J., Unsolved problems concerning lattice points, (Research Notes in Mathematics 15 Pitman, London, San Francisco, Melbourne, 1977).Google Scholar
[10]Hlawka, E., “Über Gitterpunkte in Parallelepipeden”, J. Reine Angew.Math. 187 (1950), 246252.CrossRefGoogle Scholar
[11]Lekkerkerker, C.G., Geometry of Numbers, (Wolters-Noordhoff, Groningen and North-Holland, Amsterdam, London, 1969).Google Scholar
[12]Ramharter, G., “Über ein Problem von Mordell in der Geometrie der Zahlen”, Monatsh. Math. 92 (1981), 143160.CrossRefGoogle Scholar
[13]Ramharter, G., “Inhomogeneous and asymmetric minima of star sets and the diagonal group”, submitted to J. Indian Math. Soc.Google Scholar
[14]Rogers, C.A., “On a theorem of Siegel and Hlawka”, Ann. of Math. 53 (1951), 531540.CrossRefGoogle Scholar
[15]Sawyer, D.B., “Lattice points and the diagonal group”, J.London Math. Soc. 41 (1966), 466468.CrossRefGoogle Scholar
[16]Sawyer, D.B., “Lattice points in rotated star sets”, J. London Math. Soc. 43 (1968), 131142.CrossRefGoogle Scholar