Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T18:07:29.006Z Has data issue: false hasContentIssue false

Landau-Kolmogorov inequality on a finite interval

Published online by Cambridge University Press:  17 April 2009

W. Chen
Affiliation:
Department of Mathematics Statistics & Computing Science, Dalhousie University Halifax, Nova Scotia, CanadaB3H 3J5
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A sharp Landau-Kolmogorov inequality on a finite interval is proved. The proof yields the known Landau-Kolmogorov inequality on R as a limiting case, and thus provides a new proof for that result.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Bang, T., ‘Une inégalité de Kolmogorof et les fonctions presque-periodiques’, Danske Vid. Selsk. Math. Fos. Medd. 19 (1941).Google Scholar
[2]de Boor, C. and Schoenberg, I.J., ‘Cardinal interpolation and spline functions VIII. The Budan-Fourier theorem for splines and applications’, in Spline functions Karlsrude 1975, (Böhmer, K., Meinardus, G. and Schempp, W., Editors), Lecture Notes in Mathematics 501 (Springer-Verlag, Berlin, Heidelberg, New York, 1976), pp. 179.Google Scholar
[3]Caravetta, A.S., ‘An elementary proof of Kolmogorov's theorem’, Amer. Math. Monthly 81 (1974), 480486.Google Scholar
[4]Caravetta, A.S., ‘Oscillatory and zero properties for perfect splines and monosplines’, J. Analyse Math. 28 (1975), 4159.Google Scholar
[5]Fabry, C., ‘An elementary proof of Gorny's inequality’, Proc. Royal Soc. Edinburgh Sect. A 105 (1987), 345349.CrossRefGoogle Scholar
[6]Gorny, A., ‘Contribution à l'étude des fonctions dérivables d'une variable réelle’, Acta Math. 71 (1939), 317358.CrossRefGoogle Scholar
[7]Hadamand, J., ‘Sur le module maximum d'une fonction et de ses dérivées’, C.R. Soc. Math. France (1914), 6872.Google Scholar
[8]Kallioniemi, H., ‘On bounds for the derivatives of a complex-valued function on a compact interval’, Math. Scand. 39 (1976), 295314.CrossRefGoogle Scholar
[9]Karlin, S., ‘Oscillatory perfect splines and related extremum problems’, in Spline functions and approximation theory, (Karlin, S., Micchelli, C. A., Pinkus, A. and Schoenberg, I. J., Editors) (Academic Press, New York, 1976), pp. 371460.Google Scholar
[10]Kolmogorov, A., ‘On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval’, Amer. Math. Soc. Transl. Ser. 1 2 (1962), 233243.Google Scholar
[11]Landau, E., ‘Einige Ungleichungen für zweimal differentzierbare Funktionen’, Proc. London Math. Soc. (2) 13 (1913), 4349.Google Scholar
[12]Matorin, A.P., ‘On inequalities between the maxima of the absolute values of a function and its derivatives on a half-line’, Amer. Math. Soc. Transl. Ser. 2 8 (1958), 1317.Google Scholar
[13]Pinkus, A., ‘Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval’, J. Approx. Theory 23 (1978), 3764.CrossRefGoogle Scholar
[14]Schoenberg, I.J. and Cavaretta, A., Solution of Landau's problem concerning higher derivatives on the halfline (MRCT.S.R. #1050, Madison, Wisconsin, 1970).Google Scholar