Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T05:55:24.205Z Has data issue: false hasContentIssue false

Lacunary sets for connected and totally disconnected compact groups

Published online by Cambridge University Press:  17 April 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD theses
Copyright
Copyright © Australian Mathematical Society 1978

References

[1]Cecchini, Carlo, “Lacunary Fourier series on compact Lie groups”, J. Functional Analysis 11 (1972), 191203.CrossRefGoogle Scholar
[2]Dornhoff, Larry, Group representation theory. Part A: Ordinary representation theory (Pure and Applied Mathematics, 7. Marcel Dekker, New York, 1971).Google Scholar
[3]Hewitt, Edwin, Ross, Kenneth A., Abstract harmonic analysis, Volume II (Die Grundlehren der mathematischen Wissenschaften, 152. Springer-Verlag, Berlin, Heidelberg, New York, 1970).Google Scholar
[4]Hutchinson, M.F., “Non–tall compact groups admit infinite Sidon sets”, J. Austral. Math. Soc. Ser. A (to appear).Google Scholar
[5]McMullen, John R., “Compact torsion groups”, Proc. Second Internat. Conf. Theory of Groups, Canberra, 1973, 453462 (Lecture Notes in Mathematics, 372. Springer-Verlag, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar
[6]Parker, Willard A., “Central Sidon and central Λp sets”, J. Austral. Math. Soc. 14 (1972), 6274.CrossRefGoogle Scholar
[7]Price, J.F., “Local Sidon sets and uniform convergence of Fourier series”, Israel J. Math. 17 (1974), 169175.CrossRefGoogle Scholar
[8]Rider, Daniel, “Central lacunary sets”, Monatsh. Math. 76 (1972), 328338.CrossRefGoogle Scholar