Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T16:12:01.431Z Has data issue: false hasContentIssue false

A JORDAN-LIKE DECOMPOSITION IN THE NONCOMMUTATIVE SCHWARTZ SPACE

Published online by Cambridge University Press:  15 December 2014

KRZYSZTOF PISZCZEK*
Affiliation:
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, ul. Umultowska 87, 61-614 Poznań, Poland email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that every continuous self-adjoint functional on the noncommutative Schwartz space can be decomposed into a difference of two positive functionals. Moreover, this decomposition is minimal in the natural sense.

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Publishing Association Inc. 

References

Bost, J.-B., ‘Principe d’Oka, K-théorie et systèmes dynamiques non commutatifs’, Invent. Math. 101(2) (1990), 261333.Google Scholar
Ciaś, T., ‘On the algebra of smooth operators’, Studia Math. 218(2) (2013), 145166.CrossRefGoogle Scholar
Cuntz, J., ‘Cyclic theory and the bivariant Chern–Connes character’, in: Noncommutative Geometry, Lecture Notes in Mathematics, 1831 (Springer, Berlin, 2004), 73135.Google Scholar
Dales, H. G., Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series, 24 (Clarendon Press and Oxford University Press, New York, 2000), Oxford Science.Google Scholar
Domański, P., ‘Algebra of smooth operators’, http://main3.amu.edu.pl/∼domanski/salgebra1.pdf.Google Scholar
Elliott, G. A., Natsume, T. and Nest, R., ‘Cyclic cohomology for one-parameter smooth crossed products’, Acta Math. 160(3–4) (1988), 285305.CrossRefGoogle Scholar
Jarchow, H., Locally Convex Spaces, Mathematische Leitfäden [Mathematical Textbooks] (Teubner, Stuttgart, 1981).CrossRefGoogle Scholar
Meise, R. and Vogt, D., Introduction to Functional Analysis, Oxford Graduate Texts in Mathematics, 2 (Clarendon Press and Oxford University Press, New York, 1997), translated from the German by M. S. Ramanujan and revised by the authors.Google Scholar
Phillips, N. C., ‘K-theory for Fréchet algebras’, Internat. J. Math. 2(1) (1991), 77129.CrossRefGoogle Scholar
Pirkovskii, A. Yu., ‘Flat cyclic Fréchet modules, amenable Fréchet algebras, and approximate identities’, Homology Homotopy Appl. 11(1) (2009), 81114.Google Scholar
Piszczek, K., ‘Automatic continuity and amenability in the noncommutative Schwartz space’, submitted.Google Scholar
Schweitzer, L. B., ‘Spectral invariance of dense subalgebras of operator algebras’, Internat. J. Math. 4(2) (1993), 289317.Google Scholar