Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T06:12:44.447Z Has data issue: false hasContentIssue false

The Joly topology and the Mosco-Beer topology revisited

Published online by Cambridge University Press:  17 April 2009

Dominique Azé
Affiliation:
Mathématiques, Université de Perpignan, 52 Av. de Villeneuve 66860 Perpignan Cedex, France
Jean-Paul Penot
Affiliation:
U.R.A. C.N.R.S. 1204 Faculté des Sciences, Av. de L'Universite, 64000 Pau, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some extensions to the non reflexive case of continuity results for the Legendre-Fenchel transform are presented following an approach due to J.-L. Joly. We compare the topology introduced by J.-L. Joly and the Mosco-Beer topology introduced by G. Beer. In particular, in the case of the space of closed proper convex functions defined on the dual of a normed vector space they coincide.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Attouch, H. and Wets, R.J.-B., ‘Epigraphical analysis’, in Analyse non linéaire. Contributions en l'honneur de J.-J. Moreau, (Attouch, H. et al. , Editor), C.R.M. Montréal (Gauthier-Villars, Paris, 1989), pp. 73100.Google Scholar
[2]Attouch, H. and Wets, R.J.-B., ‘Quantitative stability of variational systems: I. The epigraphical distance’, Trans. Amer. Math. Soc. 328 (1991), 695729.Google Scholar
[3]Beer, G., ‘On Mosco convergence of convex sets’, Bull. Austal. Math. Soc. 38 (1988), 239253.CrossRefGoogle Scholar
[4]Beer, G., ‘On the Young-Fenchel transform for convex functions’, Proc. Amer. Math. Soc. 104 (1988), 11151123.CrossRefGoogle Scholar
[5]Beer, G., ‘Three characterizations of the Mosco topology for convex functions’, Arch. Math. 55 (1990), 285292.CrossRefGoogle Scholar
[6]Beer, G., ‘Conjugate convex functions and the epi-distance topology’, Proc. Amer. Math.Soc. 108 (1990), 117126.CrossRefGoogle Scholar
[7]Beer, G. and Borwein, J.M., ‘Mosco convergence and reflexivity’, Proc. Amer. Math. Soc. 109 (1990), 427436.CrossRefGoogle Scholar
[8]Beer, G. and Pai, D., ‘On convergence of convex sets and relative Chebyshev centers’, J. Approx. Theory 62 (1990), 147169.CrossRefGoogle Scholar
[9]Joly, J.-L., Une famille de topologies et de convergences sur l'ensemble des fonctionnelles convexes, Thèse d'état (Université de Grenoble, 1970).Google Scholar
[10]Joly, J.-L., ‘Une famille de topologies sur l'ensemble des fonctions convexes pour lesquelles la polarité est bicontinue’, J. Math. Pures Appl. IX Sér. 52 (1973), 421441.Google Scholar
[11]Mosco, U., ‘Convergence of convex sets and of solutions of variational inequalities’, Adv. in Math. 3 (1969), 510585.CrossRefGoogle Scholar
[12]Mosco, U., ‘On the continuity of the Young-Fenchel transform’, J. Math. Anal. Appl. 35 (1971), 518535.CrossRefGoogle Scholar
[13]Penot, J.-P., ‘The cosmic Hausdorff topology, the bounded Hausdorff topology and continuity of polarities’, Proc. Amer. Math. Soc. 113 (1991), 275285.CrossRefGoogle Scholar
[14]Penot, J.-P., ‘Preservation of persistence and stability under intersections and operations’, J. Optim. Theory Appl. (to appear).Google Scholar
[15]Walkup, D. and Wets, R.J.-B., ‘Continuity of some cone-convex-valued mappings’, Proc.Amer. Math Soc. 18 (1967), 229253.CrossRefGoogle Scholar
[16]Wijsman, R.A., ‘Convergence of sequences of convex sets, cones and functions’, Bull.Amer. Math Soc. 70 (1964), 186188.CrossRefGoogle Scholar
[17]Wijsman, R.A., ‘Convergence of sequences of convex sets, cones and functions II’, Trans. Amer. Math Soc. 123 (1966), 3245.CrossRefGoogle Scholar