Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T23:37:30.790Z Has data issue: false hasContentIssue false

James quasi reflexive space has the fixed point property

Published online by Cambridge University Press:  17 April 2009

M.A. Khamsi
Affiliation:
University of Southern California, Department of Mathematics DRB 306, 1042W. 36th Place, Los Angeles, CA 90089–1113, United States of America
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that the classical sequence James space has the fixed point property. This gives an example of Banach space with a non-unconditional basis where the Maurey-Lin's method applies.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1]Alspach, D., ‘A fixed point free non expansive map’, Proc. Amer. Math. Soc. 82 (1981), 423424.CrossRefGoogle Scholar
[2]Andrew, A., ‘James' quasi-reflexive space is not isomorphic to any subspace of its dual’, Israel J. Math. 38 (1981), 276282.CrossRefGoogle Scholar
[3]Bellenot, S., ‘Transfinite duals of quasi-reflexive Banach spaces’, Trans. Amer. Math. Soc. 273 (1982), 551577.CrossRefGoogle Scholar
[4]Casazza, P.G., ‘James quasi-reflexive space is primary’, Israel J. Math. 28 (1977), 294305.CrossRefGoogle Scholar
[5]James, R.C., ‘A non-reflexive Banach space isometric with its second conjugate space’, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174177.CrossRefGoogle ScholarPubMed
[6]James, R.C., ‘Banach spaces quasi-reflexive of order one’, Studia. Math. 60 (1977), 157177.CrossRefGoogle Scholar
[7]Karlovitz, L.A., ‘Existence of fixed points for non-expansive mappings in a space without normal structure’, Pacific J. Math. 66 (1976), 153159.CrossRefGoogle Scholar
[8]Khamsi, M.A., ‘Normal structure for Banach spaces with Schauder decomposition’ (to appear).Google Scholar
[9]Kirk, W.A., ‘A fixed point theorem for mappings which do not increase idstances’, Amer. Math. Monthly 72 (1965), 10041006.CrossRefGoogle Scholar
[10]Kirk, W.A., Fixed point theory for non-expansive mapping I, II: Lecture Notes in Math 886, pp. 484505 (Springer, Berlin, 1981). Contemp. Math. 18, pp. 121–140 (A.M.S., Providence RI).Google Scholar
[11]Lin, B.L. and Lohman, R.H., ‘On generalized James quasi-reflexive Banach spaces’, Bull. Inst. Math. Acad. Sinica 8 (1980), 389399.Google Scholar
[12]Lin, P.K., Texas Functional Analysis Seminar 1982–1983 (The University of Texas Austin).Google Scholar
[13]Lin, P.K., ‘Unconditional bases and fixed points of non-expansivre mappings’, Pacific J. Math. 116 (1985), 6976.CrossRefGoogle Scholar
[14]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces, Vol I and II (Springer, Berlin-Heidelberg-New York, 1977 and 1979).CrossRefGoogle Scholar
[15]Maurey, B., Points fixes des contractions sur un convexe ferme de L1: Seminaire d'analyse fonctionnelle, pp. 8081 (Ecole Polytechnique, Palaiseau).Google Scholar
[16]Reich, S., ‘The fixed point problem for non-expansive mappings, I, II’, Amer. Math. Monthly 83 (1976), 266268. 87, pp. 292–294.CrossRefGoogle Scholar