Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-18T15:25:35.123Z Has data issue: false hasContentIssue false

Isometric multipliers of Segal algebras

Published online by Cambridge University Press:  17 April 2009

K. Parthasarathy
Affiliation:
Department of Mathematics, Indian Institute of Technology, Kanpur, India.
U.B. Tewari
Affiliation:
Department of Mathematics, Indian Institute of Technology, Kanpur, India.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that for a large class of Segal algebras, the isometric multipliers consist of scalar multiples of translation operators.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1979

References

[1]* Burnham, James T., “Multipliers of commutative. A-Segal algebras”, Tamkang J. Math. 7 (1976), 717.Google Scholar
[2]Grothendieck, Alexandre, Produits tensoriels topologiques et espaces nucléaires (Memoirs of the American Mathematical Society, 16. American Mathematical Society, Providence, Rhode Island, 1955).Google Scholar
[3]Hewitt, Edwin and Ross, Kenneth A., Abstract harmonic analysis, Volume II (Die Grundlehren der mathematischen Wissenschaften, 152. Springer-Verlag, Berlin, Heidelberg, New York, 1970).Google Scholar
[4]Kapoor, Vir Vikram, “Tensor products of Segal algebras” (Doctoral Dissertation, Indian Institute of Technology, Kanpur, 1973).Google Scholar
[5]Krogstad, Harald E., “Multipliers on Segal algebras”, Math. Scand. 38 (1976), 285303.Google Scholar
[6]Larsen, Ronald, An introduction to the theory of multipliers (Die Grundlehren der mathematischen Wissenschaften, 175. Springer-Verlag, Berlin, Heidelberg, New York, 1970).Google Scholar
[7]Parrott, S.K., “Isometric multipliers”, Pacific J. Math. 25 (1968), 159166.Google Scholar
[8]Reiter, Hans, L1 -algebras and Segal algebras (Lecture Notes in Mathematics, 231. Springer-Verlag, Berlin, Heidelberg, New York, 1971).CrossRefGoogle Scholar
[9]Rudin, Walter, Fourier analysis on groups (Interscience Tracts in Pure and Applied Mathematics, 12. Interscience [John Wiley & Sons], New York, London, Sydney, 1962).Google Scholar
[10]Strichartz, Robert S., “Isomorphisms of group algebras”, Proc. Amer. Math. Soc. 17 (1966), 858862.Google Scholar
[11]Tewari, U.B., “Isomorphisms of some convolution algebras and their multiplier algebras”, Bull. Austral. Math. Soc. 7 (1972), 321335.Google Scholar
[12]Tewari, U.B., “Multipliers of Segal algebras”, Proc. Amer. Math. Soc. 54 (1976), 157161.Google Scholar
[13]Unni, K.R., “Segal algebras of Beurling type”, Functional analysis and its applications, 529537 (international Conference, Madras, 1973. Lecture Notes in Mathematics, 399. Springer-Verlag, Berlin, Heidelberg, New York, 1974).Google Scholar
[14]Wendel, J.G., “Left centralizers and isomorphisms of group algebras”, Pacific J. Math. 2 (1952), 251261.CrossRefGoogle Scholar