Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-11T02:06:56.405Z Has data issue: false hasContentIssue false

IRRATIONALITY OF ZEROS OF POLYGAMMA FUNCTIONS

Published online by Cambridge University Press:  10 February 2025

PREETI GOYAT*
Affiliation:
Chennai Mathematical Institute, Sipcot IT Park, Siruseri, Kelambakkam 603103, India

Abstract

Our work owes its origin to a recent note of Ram Murty [‘Irrationality of zeros of the digamma function’, Number Theory in Memory of Eduard Wirsing (eds. H. Maier, R. Steuding and J. Steuding) (Springer, Cham, 2023), 237–243], in which he proves that all the zeros of the digamma function are irrational with at most one possible exception. We extend this investigation to higher-order polygamma functions.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, A., Transcendental Number Theory (Cambridge University Press, Cambridge, 1975).CrossRefGoogle Scholar
Ball, K. and Rivoal, T., ‘Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs’, Invent. Math. 146 (2001), 193207.CrossRefGoogle Scholar
Chowla, P. and Chowla, S., ‘On irrational numbers’, Norske Vid. Selsk. Skr. (Trondheim) 3 (1982), 15.Google Scholar
David, S., Hirata-Kohno, N. and Kawashima, M., ‘Linear forms in polylogarithms’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 23(3) (2022), 14471490.Google Scholar
Fischler, S., Sprang, J. and Zudilin, W., ‘Many odd zeta values are irrational’, Compos. Math. 155 (2019), 938952.CrossRefGoogle Scholar
Gun, S., Murty, M. R. and Rath, P., ‘On a conjecture of Chowla and Milnor’, Canad. J. Math. 63(6) (2011), 13281344.CrossRefGoogle Scholar
Hölder, O., ‘Über die Eigenschaft der $\gamma$ -Funktion, keiner algebraischen Differentialgleichung zu genügen’, Math. Ann. 28 (1887), 113.CrossRefGoogle Scholar
Kölbig, K. S., ‘The polygamma function and derivatives of the cotangent function for rational arguments’, CERN-IT-Reports, CERN-CN-96-005.Google Scholar
Milnor, J., ‘On polylogarithms, Hurwitz zeta functions and their Kubert identities’, Enseign. Math. (2) 29 (1983), 281322.Google Scholar
Murty, M. R., ‘Irrationality of zeros of the digamma function’, in: Number Theory in Memory of Eduard Wirsing (eds. Maier, H., Steuding, R. and Steuding, J.) (Springer, Cham, 2023), 237243.CrossRefGoogle Scholar
Radchenko, D. and Zagier, D., ‘Arithmetic properties of the Herglotz function’, J. reine angew. Math. 797 (2023), 229253.Google Scholar
Rivoal, T., ‘La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs’, C. R. Acad. Sci. Paris, Ser. I 331(4) (2000), 267270.CrossRefGoogle Scholar