Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T03:01:41.540Z Has data issue: false hasContentIssue false

Inverse shadowing of circle maps

Published online by Cambridge University Press:  17 April 2009

Jong-Jin Park
Affiliation:
Department of Mathematics, Chonbuk National University, Chonju, Chonbuk, Korea, e-mail: [email protected]
Keonhee Lee
Affiliation:
Department of Mathematics, Chungnam National University, Daejeon, 305–764, Korea, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the concepts of shadowing and (c, h−) inverse shadowing of circle homeomorphisms are equivalent.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Corless, R. and Pilyugin, S., ‘Approximate and real trajectories for generic dynamical systems’, J. Math. Anal. Appl. 189 (1995), 409423.CrossRefGoogle Scholar
[2]Diamond, P., Kloeden, P., Kozyakin, V. and Pokrovskii, A., ‘Computer rebustness of semi-hyperbolic mappings’, Random Comput. Dynam. 3 (1995), 5770.Google Scholar
[3]Diamond, P., Han, Y. and Lee, K., ‘Bishadowing and hyperbolicity’, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), 17791788.CrossRefGoogle Scholar
[4]Handel, M., ‘Global shadowing of pseudo Anosov homeomorphisms’, Ergodic Theory Dynamical Systems 5 (1985), 373377.CrossRefGoogle Scholar
[5]Kloeden, P. and Ombach, J., ‘Hyperbolic homeomorphisms and bishadowing’, Ann. Polon. Math. 65 (1997), 171177.CrossRefGoogle Scholar
[6]Kloeden, P., Ombach, J. and Pokrovskii, A., ‘Continuous and inverse shadowing’, Funct. Differ. Equ. 6 (1999), 137153.Google Scholar
[7]Lee, K., ‘Continuous inverse shadowing and hyperbolicity’, Bull. Austral. Math. Soc. 67 (2003), 1526.CrossRefGoogle Scholar
[8]Lewowicz, J., ‘Persistence in expensive systems’, Ergodic Theory Dynamical Systems 3 (1983), 567578.CrossRefGoogle Scholar
[9]Melo, W. and Strien, S., One-dimensional dynamics (Springer-Verlag, Berlin, 1993).CrossRefGoogle Scholar
[10]Pilyugin, S., Shadowing of dynamical systms, Lecture Notes in Math. 1706 (Springer-Verlag, Berlin, Heidelberg, New York, 1999).Google Scholar
[11]Plamenevskaya, O., ‘Pseudo-orbit tracing property and limit shadowing property on a circle’, Vestnik St. Petersburg Univ. Math. 30 (1997), 2730.Google Scholar
[12]Sakai, K., ‘Diffeomorphisms with persistency’, Proc. Amer. Math. Soc. 124 (1996), 22492254.CrossRefGoogle Scholar