Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T08:13:00.768Z Has data issue: false hasContentIssue false

Invariant analytic hypersurfaces in complex Lie groups

Published online by Cambridge University Press:  17 April 2009

Bruce Gilligan
Affiliation:
Department of Mathematics and Statistics, University of Regina, Regina, Canada S4S 0A2, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose G is a complex Lie group and H is a closed complex subgroup of G. Let G′ denote the commutator subgroup of G. If there are no nonconstant holomorphic functions on G/H and H is not contained in any proper parabolic subgroup of G, then Akhiezer [2] asked whether every analytic hypersurface in G which is invariant under the right action of H is also invariant under the right action of G′. In this paper we answer a related question in two settings. Under the assumptions stated above we show that the orbits of the radical of G in G/H cannot be Cousin groups, provided G/H is Kähler. We also introduce an intermediate fibration of G/H induced by the holomorphic reduction of the radical orbits and resolve the related question in a situation arising from this fibration.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Akhiezer, D.N., ‘Invariant meromorphic functions on complex semisimple Lie groups’, Invent. Math. 65 (1982), 325329.CrossRefGoogle Scholar
[2]Akhiezer, D.N., ‘Invariant analytic hypersurfaces in complex nilpotent Lie groups’, Ann. Global anal. Geom. 2 (1984), 129140.CrossRefGoogle Scholar
[3]Akhiezer, D.N. and Gilligan, B., ‘On complex homogeneous spaces with top homology in codimension two’, Canad. J. Math. 46 (1994), 897919.CrossRefGoogle Scholar
[4]Andreotti, A. and Gherardelli, F., ‘Estensioni commutative di varietà Abeliane’, Quaderno manoscritto del Centro di Analisi Globale del CNR, Firenze (1972), 148.Google Scholar
[5]Berteloot, F. and Oeljeklaus, K., ‘Invariant plurisubharmonic functions and hypersurfaces on semi–simple complex Lie groups’, Math. Ann. 281 (1988), 513530.CrossRefGoogle Scholar
[6]Cousin, P., ‘Sur les fonctions triplement périodiques de deux variables’, Acta Math. 33 (1910), 105232.CrossRefGoogle Scholar
[7]Gilligan, B. and Huckleberry, A., ‘On non–compact complex nil–manifolds’, Math. Ann. 238 (1978), 3949.CrossRefGoogle Scholar
[8]Gilligan, B., Oeljeklaus, K. and Richthofer, W., ‘Homogeneous complex manifolds with more than one end’, Canad. J. Math. 41 (1989), 163177.CrossRefGoogle Scholar
[9]Grauert, H. and Remmert, R., ‘Über kompakte homogene komplexe Mannigfaltigkeiten’, Arch. Math. 13 (1962), 498507.CrossRefGoogle Scholar
[10]Huckleberry, A.T. and Margulis, G.A., ‘Invariant analytic hypersurfaces’, Invent. Math. 71 (1983), 235240.CrossRefGoogle Scholar
[11]Huckleberry, A.T. and Oeljeklaus, E., ‘On holomorphically separable complex solvmanifolds’, Ann. Inst. Fourier (Grenoble) 36 (1986), 5765.CrossRefGoogle Scholar
[12]Oeljeklaus, K., Hyperflächen und Geradenbündel auf homogenen komplexen Mannig-faltigkeiten (Dissertation, Bochum, 1987), Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, 36 (Universität Münster, Mathematisches Institut, Münster, 1985), pp. 74.Google Scholar
[13]Oeljeklaus, K. and Richthofer, W., ‘On the structure of complex solvmanifolds’, J. Differential Geom. 27 (1988), 399421.CrossRefGoogle Scholar
[14]Oeljeklaus, K. and Richthofer, W., ‘Recent results on homogeneous complex manifolds’, in Complex Analysis III, (College Park, Md., 1985–86), Lecture Notes in math. 1277 (Springer-Verlag, Berlin, 1987), pp. 78119.Google Scholar
[15]Tits, J., ‘Free subgroups in linear groups’, J. Algebra 20 (1972), 250270.CrossRefGoogle Scholar