Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T20:22:44.922Z Has data issue: false hasContentIssue false

Internal completeness and injectivity of Boolean algebras in the topos of M-sets

Published online by Cambridge University Press:  17 April 2009

M. Mehdi Ebrahimi
Affiliation:
Department of MathematicsUniversity of Shahid BeheshtiTehranIran
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study internal completeness, injectivity and some related notions in the category MBoo of Boolean algebras in the topos MEns of M-sets, for a monoid M.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Balbes, R. and Dwinger, P., Distributive Lattices (University of Missouri Press, 1975).Google Scholar
[2]Banaschewski, B. and Bhutani, K.R., ‘Boolean algebras in a localic topos’, Math. Proc. Cambridge Philos. Soc. 100 (1986), 4355.CrossRefGoogle Scholar
[3]Burris, S. and Valeriote, M., ‘Expanding varieties by monoids of endomorphisms’, Algebra Universalis 17 (1983), 150169.CrossRefGoogle Scholar
[4]Ebrahimi, M.M., ‘Algebra in a Grothendieck topos: injectivity in quasi-equational classes.’, J. Pure. Appl. Algebra 26 (1982), 269280.CrossRefGoogle Scholar
[5]Goldblatt, R., Topoi: The Categorical Analysis of Logic (North-Holland, Amsterdam, 1979).Google Scholar
[6]Halmos, P., Lectures on Boolean Algebras (van Nostrand, Princeton, 1963).Google Scholar
[7]Ježek, J., ‘Subdirectly irreducible and simple Boolean algebras with endomorphisms’, in Universal Algebra and Lattice Theory: Lecture Notes in Math. 1149, Proc., Charleston, 1984, pp. 150162 (Springer-Verlag, Berlin, Heidelberg, New York, 1985).Google Scholar
[8]Johnston, P.T., Topos Theory (Academic Press, 1977).Google Scholar
[9]Johnstone, P.T., ‘Conditions related to de Morgan's law’: Lectuure Notes in Math. 753, Proc., Durham 1977, pp. 479491 (Springer-Verlag, Berlin, heidelberg, New York).Google Scholar
[10]MacLane, S., Categories for the Working Mathematician (Graduate Texts in Mathematics, No 5, Springer-Verlag, Berlin, Heidelberg, New York, 1971).Google Scholar
[11]Sikorski, R., Boolean Algebras (Ergebnisse der Math. Band 25 Springer-Verlag, Berlin, Heidelberg, New York, 1964).Google Scholar