Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T20:21:38.924Z Has data issue: false hasContentIssue false

Indépendance algébrique de logarithmes en caractéristique P

Published online by Cambridge University Press:  17 April 2009

Laurent Denis
Affiliation:
Laboratoire Paul Painlevé UMR CNRS 8524, U.F.R. de Mathématiques Pures et Appliquées, Bât. M2, Université des Sciences et Technologies de Lille 1, 59665 Villeneuve d'Ascq Cedex, France, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let k be the rational function field over the field with q elements with characteristic p. Since the work of Carlitz we know in this situation the function ζ analog of the Riemann zeta function and the function Logφ analog of the usual logarithm. We will show two main results. Firstly, if ξ denotes the fundamental period of Carlitz module, we prove that ξ, ζ(1),…, ζ(p – 2) are algebraically independent over k. Secondly if α1,…, αn are rational elements (of degree less than q/(q − 1) to ensure convergence of the logarithm) such that Logφ α1,…, Logφ αn are linearly independent over k then they are algebraically independent over k. The point is to find suitable functions taking these values and for which Mahler's method can be used.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Becker, P.G., ‘Algebraic independence of the values of certain series by Mahler's method’, Monatsh. Math. 114 (1992), 183198.CrossRefGoogle Scholar
[2]Berthé, V., ‘Automates et valeurs de transcendance du logarithme de Carlitz’, Acta Arith. 66 (1994), 369390.CrossRefGoogle Scholar
[3]Carlitz, L., ‘On certain functions connected with polynomials in a Galois field’, Duke Math. J. 1 (1935), 137168.CrossRefGoogle Scholar
[4]Denis, L., ‘Théorème de Baker et modules de Drinfeld’, J. Number Theory 43 (1993), 203215.CrossRefGoogle Scholar
[5]Denis, L., ‘Dérivées d'un module de Drinfeld et transcendance’, Duke Math. J. 80 (1995), 113.CrossRefGoogle Scholar
[6]Denis, L., ‘Méthodes fonctionnelles pour la transcendance en caractéristique finie’, Bull. Austral. Math. Soc. 50 (1994), 273286.CrossRefGoogle Scholar
[7]Denis, L., ‘Indépendance algébrique des dérivées d'une période du module de Carlitz’, J. Austral. Math. Soc. 69 (2000), 818.CrossRefGoogle Scholar
[8]Denis, L., ‘Indépendance algébrique de différents π’, C.R. Acad. Sci. Paris, Sér. 1 Math. 327 (1998), 711714.CrossRefGoogle Scholar
[9]Damamme, G. et Hellegouarch, Y., ‘Transcendence of the values of the Carlitz Zeta function by Wade's method’, J. Number Theory 39 (1991), 257278.CrossRefGoogle Scholar
[10]de Mathan, B., ‘Un critère de transcendance en caractéristique positive’, C.R. Acad. Sci. Paris, Sér. 1 Math. 319 (1994), 427432.Google Scholar
[11]Papanikolas, M.A., ‘Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms’, (preprint 2005).Google Scholar
[12]Wade, L.I., ‘Certain quantities transcendental over GF(pn, x)’, Duke Math. J. 8 (1941), 701720.CrossRefGoogle Scholar
[13]Yu, J., ‘Analytic homomorphism into Drinfeld modules’, Ann. of Math. (2) 145 (1997), 215233.CrossRefGoogle Scholar
[14]Yu, J., ‘Transcendance and Drinfeld modules: Several variables’, Duke Math. J. 58 (1989), 559575.CrossRefGoogle Scholar