Published online by Cambridge University Press: 17 April 2009
In a recent paper the authors showed that certain set-valued mappings from a Baire space into subsets of a Banach space which have a continuity property defined in terms of Kuratowski's index of non-compactness have inherent single-valued properties. Here we generalise the continuity property to one defined in terms of a weak index of non-compactness and we show that this wider class of set-valued mappings also has significant implications for the differentiability of convex functions on Banach spaces.