Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T17:09:25.519Z Has data issue: false hasContentIssue false

Hopfian and co-Hopfian groups

Published online by Cambridge University Press:  17 April 2009

Satya Deo
Affiliation:
Department of MathematicsR.D. UniversityJabalpur 482001India
K. Varadarajan
Affiliation:
Department of MathematicsUniversity of CalgaryCalgary, AlbertaCanada T2N 1N4
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main results proved in this note are the following:

(i) Any finitely generated group can be expressed as a quotient of a finitely presented, centreless group which is simultaneously Hopfian and co-Hopfian.

(ii) There is no functorial imbedding of groups (respectively finitely generated groups) into Hopfian groups.

(iii) We prove a result which implies in particular that if the double orientable cover N of a closed non-orientable aspherical manifold M has a co-Hopfian fundamental group then π1(M) itself is co-Hopfian.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Baumslag, G., ‘On generalized free products’, Math. Z. 78 (1962), 423438.CrossRefGoogle Scholar
[2]Bieri, R., Homological dimension of discrete groups, Queen Mary College Math. Notes, 1976.Google Scholar
[3]Bieri, R., ‘Gruppen mit Poincaré-Dualität’, Comment. Math. Helv. 47 (1972), 373396.CrossRefGoogle Scholar
[4]Brown, K.S., ‘Euler characteristics of discrete groups and G-spaces’, Invent. Math. 27 (1974), 229264.CrossRefGoogle Scholar
[5]Frederick, K.N., ‘The Hopfian property for a class of fundamental groups’, Comm. Pure Appl. Math. 16 (1963), 18.CrossRefGoogle Scholar
[6]Gonzalez-Acuna, F., Litherland, R. and Whitten, W., ‘Co-Hopficity of Seifert bundle groups’, Trans. Amer. Math. Soc. 341 (1994), 143155.Google Scholar
[7]Gonzalez-Acuna, F. and Whitten, W., ‘Imbeddings of three-manifold groups’, Mem. Amer. Math. Soc. 474 (1992).Google Scholar
[8]Gonzalez-Acuna, F. and Whitten, W., ‘Co-Hopficity of 3-Manifold Groups’, Topology Appl. 56 (1994), 8797.CrossRefGoogle Scholar
[9]Gottlieb, D.H., ‘A certain subgroup of the fundamental group’, Amer. J. Math. 87 (1965), 840856.CrossRefGoogle Scholar
[10]Hempel, J., ‘Residual finiteness of surface groups’, Proc. Amer. Math. Soc. 32 (1972), 323.CrossRefGoogle Scholar
[11]Higman, G., ‘Subgroups of finitely presented groups’, Proc. Royal Soc. Ser. A 262 (1961), 455475.Google Scholar
[12]Hopf, H., ‘Beiträge zur Klassifizierung der Flächen abbildungen’, J. Reine Angew. Math. 165 (1931), 225236.Google Scholar
[13]Lyndon, R.C. and Schupp, P.E., Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89 (Springer-Verlag, Berlin, Heidelberg, New York, 1977).Google Scholar
[14]Miller, C.F. and Schupp, P.E., ‘Embeddings into Hopfian groups’, J. Algebra 17 (1971), 171176.CrossRefGoogle Scholar
[15]Neumann, B.H., ‘The isomorphism problem for algebraically closed groups’, in Word problems (North Holland, 1973), pp. 553562.Google Scholar
[16]Scott, W.R., ‘Algebraically closed groups’, Proc. Amer. Math. Soc. 2 (1951), 118121.CrossRefGoogle Scholar
[17]Strebel, R., ‘A remark on subgroups of infinite index in Poincaré duality groups’, Comment. Math. Helv. 52 (1977), 317324.CrossRefGoogle Scholar
[18]Tyrer-Jones, J.M., ‘Direct products and the Hopf property’, J. Austral. Math. Soc. 17 (1974), 174196.CrossRefGoogle Scholar
[19]Varadarajan, K., ‘Pseudo-mitotic groups’, J. Pure Appl. Algebra 37 (1985), 205213.CrossRefGoogle Scholar
[20]Wang, S. and Wu, Y.Q., ‘Covering invariants and co-Hopficity of 3-manifold groups’, Proc. Lond. Math. Soc. 68 (1994), 203224.CrossRefGoogle Scholar