Article contents
HAAGERUP PROPERTY FOR $C^{\ast }$ -CROSSED PRODUCTS
Published online by Cambridge University Press: 19 October 2016
Abstract
Let $\unicode[STIX]{x1D6E4}$ be a countable discrete group that acts on a unital $C^{\ast }$ -algebra $A$ through an action $\unicode[STIX]{x1D6FC}$ . If $A$ has a faithful $\unicode[STIX]{x1D6FC}$ -invariant tracial state $\unicode[STIX]{x1D70F}$ , then $\unicode[STIX]{x1D70F}^{\prime }=\unicode[STIX]{x1D70F}\circ {\mathcal{E}}$ is a faithful tracial state of $A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4}$ where ${\mathcal{E}}:A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4}\rightarrow A$ is the canonical faithful conditional expectation. We show that $(A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4},\unicode[STIX]{x1D70F}^{\prime })$ has the Haagerup property if and only if both $(A,\unicode[STIX]{x1D70F})$ and $\unicode[STIX]{x1D6E4}$ have the Haagerup property. As a consequence, suppose that $(A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4},\unicode[STIX]{x1D70F}^{\prime })$ has the Haagerup property where $\unicode[STIX]{x1D6E4}$ has property $T$ and $A$ has strong property $T$ . Then $\unicode[STIX]{x1D6E4}$ is finite and $A$ is residually finite-dimensional.
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 95 , Issue 1 , February 2017 , pp. 144 - 148
- Copyright
- © 2016 Australian Mathematical Publishing Association Inc.
References
- 8
- Cited by