Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T02:32:45.087Z Has data issue: false hasContentIssue false

Groups of exponent eight

Published online by Cambridge University Press:  17 April 2009

Fritz J. Grunewald
Affiliation:
Mathematisches Institut der Universität, Bielefeld, Germany
George Havas
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT
J.L. Mennicke
Affiliation:
Mathematisches Institut der Universität, Bielefeld, Germany
M.F. Newman
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is a survey of the current state of knowledge on groups of exponent 8. It contains a report on a first stage of an attempt to answer the Burnside questions for these groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1979

References

[1]AдяБ, C.и., ⊓рοблэμа Бeрнсаŭ∂а u mο∞бeсmэβа β ϩрynnax (izdat “Nauka”, Moscow, 1975). English translation: S.I. Adian, The Burnside problem and identities in groups (translated by Lennox, J. and Wiegold, J.. Ergetmisse der Mathematik und ihrer Grenzgebiete, 95. Springer-Verlag, Berlin, Heidelberg, New York, to appear).Google Scholar
[2]Burnside, W., “On an unsettled question in the theory of discontinuous groups”, Quart. J. Math. 33 (1902), 230238.Google Scholar
[3]Cannon, John J., Dimino, Lucien A., Havas, George and Watson, Jane M., “Implementation and analysis of the Todd-Coxeter algorithm”, Math. Comp. 27 (1973), 463490.CrossRefGoogle Scholar
[4]Coxeter, H.S.M. and Moser, W.O.J., Generators and relations for discrete groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 14. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1957. Third edition, 1972).CrossRefGoogle Scholar
[5]Grunewald, Fritz J.Mennicke, Jens, “über eine Gruppe vom Exponenten acht” (Dissertation zur Erlangung des Doktorgrades der Fakultät für Mathematik der Universität Bielefeld, Bielefeld, 1973).Google Scholar
[6]Hermanns, Franz-Josef, “Eine metabelsche Gruppe vom Exponenten 8”, Arch, der Math. 29 (1977), 375382.CrossRefGoogle Scholar
[7]Krause, Eugene F., “Groups of exponent 8 satisfy the 14th Engel congruence”, Proc. Amer. Math. Soc. 15 (1964), 491496.CrossRefGoogle Scholar
[8]лобыч, Β.⊓., ⊂䀑⊓и䀑, A.и. [Lobyc˘, V.P., Skopin, A.I.], “О соотношениях вгруппах энспонентн 8” [Relations in groups of exponent 8], Zap. Nauc˘n. Sem. Leningrad Otdel. Mat. Inst. Steklov 64 (1976), 9294, 161.Google Scholar
[9]Macdonald, I.D., “Computer results on Burnside groups”, Bull. Austral. Math. Soc. 9 (1973), 433438.CrossRefGoogle Scholar
[10]Magnus, Wilhelm, Karrass, Abraham, Solitar, Donald, Combinatorial group theory: presentations of groups in terms of generators and relations (Pure and Applied Mathematics, 13. Interscience [John Wiley & Sons], New York, London, Sydney, 1966. Revised edition: 1976).Google Scholar
[11]Newman, M.F., “Calculating presentations for certain kinds of quotient groups”, SYMSAC ' 76, 28 (Proc. ACM Sympos. on Symbolic and Algebraic Computation, Yorktown Heights, New York, 1976. Association for Computing Machinery, New York, 1976). See also: Abstract, Sigsam Bull. 10 (1976), no. 3, 5.CrossRefGoogle Scholar
[12]PaзMч⊂лов, ю.⊓. [Razmyslov, Yu.P.], “О проблеме ХоллаХигмена” [On the Hall-Higman problem], Izv. Akad. Nauk SSSR 42 (1978), 833847.Google Scholar
[13]Robinson, Derek J.S., Finiteness conditions and generalized soluble groups, Part 1 (Ergebnisse der Mathematik und ihrer Grenzgebiete, 62. Springer-Verlag, Berlin, Heidelberg, New York, 1972).Google Scholar
[14]Robinson, Derek J.S., Finiteness conditions and generalized soluble groups, Part 2 (Ergebnisse der Mathematik und ihrer Grenzgebiete, 63. Springer-Verlag, Berlin, Heidelberg, New York, 1972).Google Scholar
[15], и.н. [Sanov, I.N.], “О проблеме Бернсайда” [On Burnside's problem], Dokl. Akad. Nauk SSSR (NS) 57 (1947), 759761.Google ScholarPubMed
[16]Санов, ин [Sanov, I.N.], “О неноторой системе соотношений В периодичесних группах с периодом степенью простого чисиа” [On a certain system of relations in periodic groups with period a power of a prime number], Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 477502.Google ScholarPubMed
[17]Shield, David, “The class of a nilpotent wreath product”, Bull. Austral. Math. Soc. 17 (1977), 5389.CrossRefGoogle Scholar
[18]Снопин, А.ш. [Skopin, A.I.], “О соотношенилх в группах энспоненты 8” [Relations In groups of exponent 8], Zap. Naucčn. Sem. Leningrad Otdel. Mat. Inst. Steklov 57 (1976), 129169. 178.Google ScholarPubMed