Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T18:04:18.240Z Has data issue: false hasContentIssue false

Groups 2-Transitive on a set of their Sylow subgroups

Published online by Cambridge University Press:  17 April 2009

Ben Brewster
Affiliation:
Department of Mathematical SciencesSUNY – BinghamtonBinghamton NY 13901United States of America
Michael B. Ward
Affiliation:
Department of MathematicsBucknell UniversityLewisburg PA 17839United States of America e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We classify, modulo the kernel of the action, finite groups G that act 2-transitively on Sylr(G) for some prime r dividing |G|. We furthermore prove that any finite group that acts 2-transitively on Sylr(G) for each prime r is solvable and of nilpotent length at most 3.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Abhyankar, S.S., ‘Galois theory on the line in nonzero characteristic’, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 68133.CrossRefGoogle Scholar
[2]André, J., ‘Projektive Ebenen über Fastkörpern’, Math. Z. 62 (1955), 137160.CrossRefGoogle Scholar
[3]Brewster, B. and Ward, M., ‘Finite solvable groups acting 2-transitively on Sylow subgroups’, in Group theory, Proceedings of the Biennial Ohio State-Denison Conference, May 1992 (World Scientific, Singapore, New Jersey, London, Hong Kong), pp. 322325.Google Scholar
[4]Carter, R.W., Finite groups of Lie type (John Wiley & Sons, London, New York, Sydney, Toronto, 1972).Google Scholar
[5]Cameron, P.J., ‘Finite permutation groups and finite simple groups’, Bull. London Math. Soc. 13 (1981), 122.CrossRefGoogle Scholar
[6]Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A. and Wilson, R.A., Atlas of finite groups (Clarendon, Oxford, 1985).Google Scholar
[7]Curtis, C.W., Kantor, W.M. and Seitz, G.M., ‘The 2-transitive permutation representations of the finite Chevalley groups’, Trans. Amer. Math. Soc. 218 (1976), 159.CrossRefGoogle Scholar
[8]Doerk, K. and Hawkes, T., Finite soluble groups (Walter de Gruyter, Berlin, New York, 1992).CrossRefGoogle Scholar
[9]Hering, C., ‘Transitive linear groups and linear groups which contain irreducible subgroups of prime order’, Geom. Dedicata 2 (1974), 425460.CrossRefGoogle Scholar
[10]Hering, C., ‘Transitive linear groups and linear groups which contain irreducible subgroups of prime order, II’, J. Algebra 93 (1985), 151164.CrossRefGoogle Scholar
[11]Huppert, B., ‘Zweifach transitive, auflösbare Permutationsgruppen’, Math. Z. 68 (1957), 126150.CrossRefGoogle Scholar
[12]Huppert, B., Endliche Gruppen I (Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
[13]Huppert, B. and Blackburn, N., Finite groups II (Springer-Verlag, Berlin, Heidelberg, New York, 1982).CrossRefGoogle Scholar
[14]Kantor, W.M., ‘Some consequences of the classification of finite simple groups’, in Finite groups-Coming of age, Proceedings of the Canadian Mathematical Society Conference held on June 15–28, 1982 (American Mathematical Society, Providence, 1985), pp. 159173.Google Scholar
[15]Maillet, E., ‘Sur les isomorphes holoédriques et transitifs des groupes symétriques ou altérnes’, J. Math. Pures Appl. 1 (1895), 534.Google Scholar
[16] Mathematica: A System for Doing Mathematics by Computer (Wolfran Research, Inc., Champaign, 1993).Google Scholar
[17]Playtis, A., Sehgal, S. and Zassenhaus, H., ‘Equidistributed permutation groups’, Communications in Algebra 6 (1978), 3557.CrossRefGoogle Scholar
[18]Ree, R., ‘A family of simple groups associated with the simple Lie algebra G 2’, Amer. J. Math. 83 (1961), 432462.CrossRefGoogle Scholar
[19]Speiser, A., Die Theorie der Gruppen von endlicher Ordnung, 3. Aufl. (Springer, Berlin, 1937 (U.S. Publication: Dover, New York, 1945)).Google Scholar
[20]Steinberg, R., ‘Automorphisms of finite linear groups’, Canad. J. Math. 9 (1959), 875891.Google Scholar
[21]Suzuki, M., Group Theory I (Springer-Verlag, Berlin, Heidelberg, New York, 1982).CrossRefGoogle Scholar
[22]Suzuki, M., ‘On a class of doubly transitive groups’, Ann. Math. 75 (1962), 105145.CrossRefGoogle Scholar
[23]Wielandt, H., Finite permutation groups (Academic Press, New York and London, 1964).Google Scholar
[24]Zassenhaus, H., ‘Über endliche Fastkörper’, Abh. Math. Sem. Univ. Hamburg 11 (1936), 187220.CrossRefGoogle Scholar