Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T16:48:16.273Z Has data issue: false hasContentIssue false

Global existence and comparison theorem for a nonlinear parabolic equation

Published online by Cambridge University Press:  17 April 2009

Mahmoud Hesaaraki
Affiliation:
Department of Mathematics, Sharif University of Technology, P.O. Box 11365–9415, Tehran, Iran, e-mail: [email protected], [email protected]
Abbas Moameni
Affiliation:
Department of Mathematics, Sharif University of Technology, P.O. Box 11365–9415, Tehran, Iran, e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider a nonlinear parabolic equation with gradient dependent nonlinearities of the form

0 < p, q and a, b ∈ ℝ, with homogeneous boundary condition in a bounded domain Ω ⊆ ℝ,N. In the case 0 < p, q ≤ 1 we prove the existence of solution for suitable initial data. A comparison theorem for the solutions with respect to supersoultions and subsolutions is proved. Using these result, uniqueness and boundedness of solutions is studied.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Andreu, F., Mazon, J. M., Simondon, F. and Toledo, J., ‘Global existence for a degenerate nonlinear diffusion problem with nonlinear gradient term and source’, Math. Ann. 314 (1999), 703728.CrossRefGoogle Scholar
[2]Bebernes, J. and Eberly, D., Mathematical problems from combustion theory, Applied Mathematical Sciences 83 (Springer-Verlag, New York, 1989).CrossRefGoogle Scholar
[3]Ben-Artzi, M., ‘Global existence and Decay for a nonlinear parabolic equation’, Nonlinear Anal. 19 (1992), 763–368.CrossRefGoogle Scholar
[4]Ben-Artzi, M., Goodman, J. and Lery, A., ‘Remarks on a nonlinear parabolic equation’, Trans. Amer. Math. Soc. 352 (2000), 731751.CrossRefGoogle Scholar
[5]Brezis, H., Opérateurs maximaux monotoes et semi-groups de contractions dans les espaces de Hilbert (North-Holland Publishing Co., Amsterdam, London, 1973).Google Scholar
[6]Chipot, M. and Weissler, F.B., ‘Some blow up results for a nonlinear parabolic problem with a gradient term’, SIAM J. Math. Anal. 20 (1989), 886907.CrossRefGoogle Scholar
[7]Deng, K. and Levine, H.A., ‘The role of critical exponents in blowup theorems: the sequel’, J. Math. Anal. Appl. 243 (2000), 85126.CrossRefGoogle Scholar
[8]Fujita, H., ‘On the blowing-up of solution of the Cauchy problem for ut = Δu + u 1+α’, J. Fac. Sci. Univ. Tokyo Sect. I Math. 13 (1966), 109124.Google Scholar
[9]Kawohl, B. and Peletier, L., ‘Remarks on blowup and deed cores for nonlinear parabolic equations’, Math. Z. 202 (1989), 207217.CrossRefGoogle Scholar
[10]Kondrat'ev, V.A., ‘On the asymptotic properties of solution of the nonlinear heat equations’, Differential Equations 34 (1998), 250259.Google Scholar
[11]Ladyzhenskaya, O.A., Ural'tseva, N.N. and Solonnikov, V., Linear and quasilinear equations of parabolic type, Translations of Math. Monographs (American Mathematical Society, Providence, R.I., 1968).CrossRefGoogle Scholar
[12]Levine, H.A., ‘The role of critical exponents in blowup theorems’, SIAM Rev. 32 (1990), 262288.CrossRefGoogle Scholar
[13]Levine, H.A., ‘Some nonexistence and instability, theorems for solutions of formally parabolic equations of the form Put = − Au + F (u)’, Arch. Rational Mech. Anal. 51 (1973), 371386.CrossRefGoogle Scholar
[14]Quittner, P., ‘Blowup for semilinear parabolic equations with a gradient term’, Math. Methods Appl. Sci. 14 (1991), 413417.CrossRefGoogle Scholar
[15]Quittner, P., ‘On global existence and stationary solutions for two classes of semilinear parabolic equations’, Comment. Math. Univ. Carolin. 34 (1993), 105124.Google Scholar
[16]Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P. and Mikhailov, A.P., Blowup in quasilinear parabolic equations (Nauka, Moscou, 1987). English translation: Walter de Gruyter, Berlin, New York (1995).Google Scholar
[17]Souplet, Ph., ‘Résultats d'explosion en temps fini pour une équation de la chaleur non linéaire’, C.R. Acad. Sc. Paris Série I 321 (1995), 721726.Google Scholar
[18]Souplet, Ph., ‘Finite time blowup for a nonlinear parabolic equation with a gradient term and applications’, Math. Methods Appl. Sci. 19 (1996), 1317–133.3.0.CO;2-M>CrossRefGoogle Scholar
[19]Souplet, Ph., Tayachi, S. and Weissler, F.B., ‘Exact self-similar blowup of solutions of a semilinear parabolic equations with a nonlinear gradient term’, Indian Univ. Math. J. 48 (1996), 655682.Google Scholar
[20]Souplet, Ph. and Weissler, F.B., ‘Self-similar sub-solutions and blowup for nonlinear parabolic equations’, J. Math. Anal. Appl. 212 (1997), 6074.CrossRefGoogle Scholar
[21]Souplet, Ph. and Weissler, F.B., ‘Poincarés inequality and global solutions of a nonlinear parabolic equation’, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 337373.CrossRefGoogle Scholar
[22]Velázquez, J.J.L., ‘Blow up for semilinear parabolic equations’, in Recent advances in partial differential, (Herrero, M.A. and Zuazua, E., Editors), RAM Res. Appl. Math. 30 (Masson, Paris, 1994), pp. 131145.Google Scholar