Hostname: page-component-599cfd5f84-v8j7l Total loading time: 0 Render date: 2025-01-07T07:20:26.680Z Has data issue: false hasContentIssue false

Geometric coverings of groups and their directions

Published online by Cambridge University Press:  17 April 2009

Rolf Brandl
Affiliation:
Mathematisches Institut, Am Hubland 12 D-8700 Würzburg West, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let a group G be covered by finitely many disjoint cosets of subgroups Gi. We study conditions which imply that the subgroups Gi are conjugate in G.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Bloom, D.M., ‘The subgroups of PSL (3, q) for odd q’, Trans. Amer. Math. Soc. 127 (1967), 150178.Google Scholar
[2]Blyth, R.D., ‘Rewriting products of group elements – I’, J. Algebra 116 (1988), 506521.CrossRefGoogle Scholar
[3]Curzio, M., Longobardi, P., Maj, M. and Robinson, D.J.S., ‘A permutational property of groups’, Arch. Math. 44 (1985), 385389.CrossRefGoogle Scholar
[4]Guralnick, R., ‘Subgroups of prime power index in a simple group’, J. Algebra 81 (1983), 304311.CrossRefGoogle Scholar
[5]Guralnick, R., ‘Subgroups inducing the same permutation representation’, J. Algebra 81 (1983), 312319.CrossRefGoogle Scholar
[6]Hestenes, M.D., ‘Singer groups’, Canad. J. Math. 22 (1970), 492513.CrossRefGoogle Scholar
[7]Huppert, B., Endliche Gruppen I (Springer Verlag, Berlin-Heidelberg-New York, 1967).CrossRefGoogle Scholar
[8]Neumann, B.H., ‘Groups covered by permutable subsets’, J. London Math. Soc. 29 (1954), 236248.CrossRefGoogle Scholar
[9]Parmenter, M.M., ‘Exact covering systems for groups’, Fund. Math. 123 (1984), 133136.CrossRefGoogle Scholar
[10]Stammbach, U., ‘Cohomological characterisations of finite solvable and nilpotent groups’, J. Pwe Appl. Algebra 11 (1977/1978), 293301.CrossRefGoogle Scholar
[11]Tomkinson, M.J., ‘FC-groups’, in Research Notes in Mathematics (Pitman, London, 1984).Google Scholar
[12]Zacher, G., ‘A lattice characterization ofthe index of a subgroup in a group’, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 69 (1980), 317323.Google Scholar