Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-18T16:00:53.736Z Has data issue: false hasContentIssue false

THE GENUS OF PERIODIC LINKS WITH RATIONAL QUOTIENTS

Published online by Cambridge University Press:  13 March 2009

SANG YOUL LEE
Affiliation:
Department of Mathematics, Pusan National University, Pusan 609-735, Korea (email: [email protected])
MYOUNGSOO SEO*
Affiliation:
Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we prove that if K is any periodic link in S3 whose quotient link is a 2-bridge link, then one half of the degree of the reduced Alexander polynomial, the minimal genus, the free genus and the canonical genus of K are all the same. We also give criteria to determine whether a given periodic link has a 2-bridge link quotient and some properties of this kind of periodic link.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1] Cromwell, P. R., ‘Homogeneous links’, J. London Math. Soc. 39 (1989), 535552.CrossRefGoogle Scholar
[2] Cromwell, P. R., Knots and Links (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
[3] Edmonds, A., ‘Least area Seifert surfaces and periodic knots’, Topol. Appl. 18 (1984), 109113.CrossRefGoogle Scholar
[4] Frankel, F. and Pontrjagin, L., ‘Ein Knotensatz mit Anwendung auf die Dimensionstheorie’, Math. Ann. 102 (1930), 785789.CrossRefGoogle Scholar
[5] Hilden, H. M., Lozano, M. T. and Montesinos-Amilibia, J. M., ‘On the character variety of periodic knots and links’, Math. Proc. Camb. Phil. Soc. 129 (2000), 477490.CrossRefGoogle Scholar
[6] Jang, H. J., Lee, S. Y. and Seo, M., ‘Casson knot invariants of periodic knots with rational quotients’, J. Knot Theory Ramifications 16 (2007), 439460.CrossRefGoogle Scholar
[7] Kawauchi, A., A Survey of Knot Theory (Birkhäuser, Basel, 1996).Google Scholar
[8] Lee, S. Y., Park, M.-S. and Seo, M., ‘The Seifert matrices of periodic links with rational quotients’, Kyungpook Math. J. 47 (2007), 295309.Google Scholar
[9] Lee, S. Y. and Seo, M., ‘Recurrence formulas for the Alexander polynomials of 2-bridge links and their covering links’, J. Knot Theory Ramifications 15 (2006), 179203.CrossRefGoogle Scholar
[10] Murasugi, K., ‘On the genus of the alternating knot I’, J. Math. Soc. Japan 10 (1958), 94105.Google Scholar
[11] Murasugi, K., ‘On the genus of the alternating knot II’, J. Math. Soc. Japan 10 (1958), 235248.Google Scholar
[12] Murasugi, K., ‘On a certain numerical invariant of link types’, Trans. Amer. Math. Soc. 117 (1965), 387422.CrossRefGoogle Scholar
[13] Murasugi, K., ‘On periodic knots’, Comm. Math. Helv. 35 (1971), 529537.Google Scholar
[14] Naik, S., ‘Periodicity, genera and Alexander polynomials of knots’, Pacific J. Math. 166 (1994), 357371.CrossRefGoogle Scholar
[15] Nakamura, T., ‘On canonical genus of fibered knot’, J. Knot Theory Ramifications 11 (2002), 341352.CrossRefGoogle Scholar
[16] Rolfsen, D., Knots and Links (AMS/Chelsea, New York, 2003).Google Scholar
[17] Seifert, H., ‘Über das Geschlecht von Knoten’, Math. Ann. 110 (1936), 571592.CrossRefGoogle Scholar
[18] Shinohara, Y., ‘On the signature of knots and links’, Trans. Amer. Math. Soc. 156 (1971), 273285.CrossRefGoogle Scholar
[19] Tripp, J. J., ‘The canonical genus of whitehead doubles of a family torus knots’, J. Knot Theory Ramifications 11 (2002), 12331242.CrossRefGoogle Scholar