Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T02:57:56.870Z Has data issue: false hasContentIssue false

Generalised Jordan-von Neumann constants and uniform normal structure

Published online by Cambridge University Press:  17 April 2009

S. Dhompongsa
Affiliation:
Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail: [email protected], [email protected]
P. Piraisangjun
Affiliation:
Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail: [email protected], [email protected]
S. Saejung
Affiliation:
Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a new geometric coefficient related to the Jordan-von Neumann constant. This leads to improved versions of known results and yields new ones on super-normal structure for Banach spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Aksoy, A.G. and Khamsi, M.A., Nonstandard methods in fixed point theory (Spinger-Verlag, Heidelberg, 1990).CrossRefGoogle Scholar
[2]Clarkson, J.A., ‘The von-Neumann-Jordan constant for the Lebesgue spaces’, Ann. Math. 38 (1937), 114115.Google Scholar
[3]Day, M.M., ‘Some characterizations of inner product spaces’, Trans. Amer. Math. Soc. 62 (1947), 320337.Google Scholar
[4]Figiel, T., ‘On the moduli of convexity and smoothness’, Studia Math. 56 (1976), 121155.CrossRefGoogle Scholar
[5]Gao, J., ‘Normal structure and the arc length in Banach spaces’, Taiwanese J. Math. 5 (2001), 353366.CrossRefGoogle Scholar
[6]Gao, J. and Lau, K.S., ‘On two classes of Banach spaces with uniform normal structure’, Studia Math. 99 (1991), 4156.CrossRefGoogle Scholar
[7]Garcia-Falset, J., ‘The fixed point property in Banach spaces with NUS-property’, J. Math. Anal. Appl. 215 (1997), 532542.CrossRefGoogle Scholar
[8]Garcia-Falset, J. and Sims, B., ‘Property (M) and the weak fixed point property’, Proc. Amer. Math. Soc. 125 (1997), 28912896.CrossRefGoogle Scholar
[9]Goebel, K., ‘Convexivity of balls and fixed-point theorems for mappings with nonexpansive square’, Compositio Math. 22 (1970), 269274.Google Scholar
[10]Goebel, K. and Kirk, W.A., Topics in metric fixed point theorem (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
[11]James, R.C., ‘Uniformly non-square Banach spaces’, Ann. Math. 80 (1964), 542550.CrossRefGoogle Scholar
[12]Jordan, P. and von Neumann, J., ‘On inner product in linear metric spaces’, Ann. Math. 36 (1935), 719723.CrossRefGoogle Scholar
[13]Kato, M., Maligranda, L. and Takahashi, Y., ‘On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces’, Studia Math. 144 (2001), 275295.CrossRefGoogle Scholar
[14]Kato, M. and Takahashi, Y., ‘On the von Neumann-Jordan constant for Banach spaces’, Proc. Amer. Math. Soc. 125 (1997), 10551062.CrossRefGoogle Scholar
[15]Kato, M. and Takahashi, Y., ‘Von Neumann-Jordan constant for Lebesgue-Bochner spaces’, J. Inequal. Appl. 2 (1998), 8997.Google Scholar
[16]Kirk, W.A., ‘A fixed point theorem for mappings which do not increase distances’, Amer. Math. Monthly 72 (1965), 10041006.CrossRefGoogle Scholar
[17]Kirk, W.A. and Sims, B., ‘Uniform normal structure and related notions’, J. Nonlinear Convex Anal. 2 (2001), 129138.Google Scholar
[18]Lau, K.S., ‘Best approximation by closed sets in Banach spaces’, J. Approx. Theory 23 (1978), 2936.Google Scholar
[19]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces II. Function spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1979).Google Scholar
[20]Megginson, R.E., An introduction to Banach space theory, Graduate Texts in Math. 183 (Springer-Verlag, New York 1998).CrossRefGoogle Scholar
[21]Milman, V.D., ‘Geometric theory of Banach spaces. Theory of basic and minimal systems’, (Russian) Uspekhi Mat. Nauk 25 (1970), 113174.Google Scholar
[22]Opial, Z., ‘Weak convergence of the sequence of successive approximations for nonexpansive mappings’, Bull. Amer. Math. Soc. 73 (1967), 591597.CrossRefGoogle Scholar
[23]Sims, B., “Ultra”-techniques in Banach space theory, Queen's Papers in Pure and Applied Mathematics (Queen's University, Kingston, 1982).Google Scholar
[24]Sims, B., ‘A class of spaces with weak normal structure’, Bull. Austral. Math. Soc. 49 (1994), 523528.Google Scholar
[25]Takahashi, Y. and Kato, M., ‘Von Neumann-Jordan constant and uniformly non-square Banach spaces’, Nihonkai Math. J. 9 (1998), 155169.Google Scholar
[26]Tasena, S., ‘On generalized u-spaces and applications to the fixed point property in Banach spaces’, (preprint).Google Scholar