Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-11T20:31:43.739Z Has data issue: false hasContentIssue false

GENERALISATION OF A RESULT ON DISTINCT PARTITIONS WITH BOUNDED PART DIFFERENCES

Published online by Cambridge University Press:  24 July 2019

RUNQIAO LI
Affiliation:
School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, PR China email [email protected]
BERNARD L. S. LIN
Affiliation:
School of Science, Jimei University, Xiamen 361021, PR China email [email protected]
ANDREW Y. Z. WANG*
Affiliation:
School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, PR China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We generalise a result of Chern [‘A curious identity and its applications to partitions with bounded part differences’, New Zealand J. Math. 47 (2017), 23–26] on distinct partitions with bounded difference between largest and smallest parts. The generalisation is proved both analytically and bijectively.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc.

Footnotes

This work was supported by the National Natural Science Foundation of China (Nos. 11401080 and 11871246).

References

Andrews, G. E., The Theory of Partitions (Cambridge University Press, New York, 1998).Google Scholar
Andrews, G. E., Beck, M. and Robbins, N., ‘Partitions with fixed differences between largest and smallest parts’, Proc. Amer. Math. Soc. 143 (2015), 42834289.Google Scholar
Breuer, F. and Kronholm, B., ‘A polyhedral model of partitions with bounded differences and a bijective proof of a theorem of Andrews, Beck, and Robbins’, Res. Number Theory 2 (2016), Article 2, 15 pages.Google Scholar
Chapman, R., ‘Partitions with bounded differences between largest and smallest parts’, Australas. J. Combin. 64 (2016), 376378.Google Scholar
Chern, S., ‘A curious identity and its applications to partitions with bounded part differences’, New Zealand J. Math. 47 (2017), 2326.Google Scholar
Chern, S., ‘An overpartition analogue of partitions with bounded differences between largest and smallest parts’, Discrete Math. 340 (2017), 28342839.Google Scholar
Chern, S. and Yee, A. J., ‘Overpartitions with bounded part differences’, Eur. J. Combin. 70 (2018), 317324.Google Scholar
Lin, B. L. S., ‘$k$-regular partitions with bounded differences between largest and smallest parts’, Preprint.Google Scholar
Lin, B. L. S., ‘Refinements of the results on partitions and overpartitions with bounded part differences’, Preprint.Google Scholar