Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T01:54:23.902Z Has data issue: false hasContentIssue false

A general denseness result for relaxed control theory

Published online by Cambridge University Press:  17 April 2009

E. J. Balder
Affiliation:
Mathematical Institute, University of Utrecht, PO Box 80.010, 3508 TA Utrecht, The Netherlands.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A result by the author on the elimination of randomization (or relaxation) for variational problems is partially extended and then used to obtain a very general result on the denseness of the set of original control functions in the set of relaxed control functions. Also, a slight extension of Aumann's theorem on the integrals of multifunctions is shown to follow directly from the elimination result.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1984

References

[1]Aumann, Robert J., “Integrals of set-valued functions”, J. Math. Anal. Appl. 12 (1965), 112.CrossRefGoogle Scholar
[2]Balder, E.J., “On a useful compactification for optimal control problems”, J. Math. Anal. Appl. 72 (1979), 391398.CrossRefGoogle Scholar
[3]Balder, E.J., “A general approach to lower semicontinuity and lower closure in optimal control theory”, SIAM J. Control Optim. 22 (1984), 570598.CrossRefGoogle Scholar
[4]Balder, E.J., “Elimination of randomization in statistical decision theory reconsidered”, J. Multivariate Anal, (to appear).Google Scholar
[5]Balder, E.J., “Mathematical foundations of statistical decision theory: a modern viewpoint”, Statistics and decisions (to appear).Google Scholar
[6]Berliocchi, Henri and Lasry, Jean-Michel, “Intégrandes normales et mesures paramétrées en calcul des variations”, Bull. Soc. Math. France 101 (1973), 129184.Google Scholar
[7]Billingsley, Patrick, Convergence of probability measures (John Wiley & Sons, New York, London, Sydney, 1968).Google Scholar
[8]Castaing, C., Valadier, M., Convex analysis and measurable multi-functions (Lecture Notes in Mathematics, 580. Springer-Verlag, Berlin, Heidelberg, New York, 1977).CrossRefGoogle Scholar
[9]Chuong, Phan Van, Vector versions of a density theorem and applications to problems of control theory”, Travaux duSeminaire d'analyse Convexe, Montpellier 1981, Exposé 19,19.1–19.19.Google Scholar
[10]Dellacherie, Claude, Meyer, Paul-André, Pvobabilités et potentiel (Hermann, Paris, 1975; English Transl., North-Holland, Amsterdam, 1978).Google Scholar
[11]Dvoretzky, A., Wald, A. and Wolfowitz, J., “Elimination of randomization in certain statistical decision procedures and zero-sum two-person games”, Ann. Math. Statist. 22 (1951), 121.CrossRefGoogle Scholar
[12]Ghouila-Houri, A., “Sur la généralisation de la notion de commande d'un système guidable”, Rev. Franc. d'inf. Rech. Opér. 4 (1967), 732.Google Scholar
[13]Hildenbrand, Werner, Core and equilibria of a large economy (Princeton University Press, Princeton, 1974).Google Scholar
[14]Neveu, Jacques, Bases mathématiques du calcul des probabilitiés (Masson, Paris, 1964; English Transl. Holden-Day San Fransisco, London, Amsterdam, 1965).Google Scholar
[15]Sainte-Beuve, M.-F., “Some topological properties of vector measures with bounded variation and its applications”, Ann. Mat. Pura Appl. (4) 116 (1978), 317379.CrossRefGoogle Scholar
[16]Warga, J., Optimal control of differential and functional equations (Academic Press, New York, London, 1972).Google Scholar