Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T22:38:30.246Z Has data issue: false hasContentIssue false

Galois module structure of holomorphic differentials

Published online by Cambridge University Press:  17 April 2009

Martha Rzedowski-Calderón
Affiliation:
Departmento de Matemáticas, Centro de Investigación y de, Estudios A vanzados del I.P.N., Apartado Postal 14–740, 07000 México, D.F. México e-mail: [email protected]@mamth.cinvestav.mx.
Gabriel Villa-Salvador
Affiliation:
Departmento de Matemáticas, Centro de Investigación y de, Estudios A vanzados del I.P.N., Apartado Postal 14–740, 07000 México, D.F. México e-mail: [email protected]@mamth.cinvestav.mx.
Manohar L. Madan
Affiliation:
Department of Mathematics, Ohio State University, 231 West 18th. Avenue, Columbus, OH 43210, United States of America e-mail: [email protected]–state.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a finite cyclic P–extension L/K of a rational function field K = κ(x) over an algebraically closed field κ of characteristic P > 0 such that every ramified prime divisor is fully ramified, we find a basis of the κ[G]-module structure of ωL(0) in terms of indecomposable modules.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Boseck, H., ‘Zur Theorie der Weierstraζpunkte’, Math. Nachr. 19 (1958), 2963.CrossRefGoogle Scholar
[2]Chevalley, C. and Weil, A., ‘Über das Verhalten der Integrale 1. Gattung bei Automorphismen des Funktionenkörpers’, Abh. Math. Sem. Univ. Hamburg 10 (1934), 358361.CrossRefGoogle Scholar
[3]Garcia, A., ‘On Weierstrass points on certain elementary Abelian P–extensions of algebraic function fieldsManuscripta Math. 72 (1991), 6779.Google Scholar
[4]Madden, D., ‘Arithmetic of generalized Artin-Schreier extensions of κ(x)’, J. Number Theory 10 (1978), 303323.CrossRefGoogle Scholar
[5]Rzedowski-Calderón, M., Villa-Salvador, G. and Madan, M., ‘Galois module structure of holomorphic differentials in characteristic P’, Arch. Math. 66 (1996), 150156.CrossRefGoogle Scholar
[6]Schmid, H.L., ‘Zur Arithmetik der zyklischen P–Körper’, J. Reine Angew. Math. 176 (19361937), 161167.Google Scholar
[7]Serre, J.-P., Local fields, Graduate Texts in Mathematics 67 (Springer-Verlag, Berlin, Heidelberg, New York, 1979).Google Scholar
[8]Valentini, R. and Madan, M., ‘Automorphisms and holomorphic differentials in characteristic P’, J. Number Theory 13 (1981), 106115.CrossRefGoogle Scholar
[9]Witt, E., ‘Zyklishe Körper und Algebren der Characteristik P vom Grad P n’, J. Reine Angew. Math. 176 (19361937), 126140.Google Scholar