Article contents
Free products of topological groups
Published online by Cambridge University Press: 17 April 2009
Abstract
In this note the notion of a free topological product Gα of a set {Gα} of topological groups is introduced. It is shown that it always exists, is unique and is algebraically isomorphic to the usual free product of the underlying groups. Further if each Gα is Hausdorff, then Gα is Hausdorff and each Gα is a closed subgroup. Also Gα is a free topological group (respectively, maximally almost periodic) if each Gα is. This notion is then combined with the theory of varieties of topological groups developed by the author. For a variety of topological groups, the -product of groups in is defined. It is shown that the -product, Gα of any set {Gα} of groups in exists, is unique and is algebraically isomorphic to the usual varietal product. It is noted that the -product of Hausdorff groups is not necessarily Hausdorff, but is if is abelian. Each Gα is a quotient group of Gα. It is proved that the -product of free topological groups of and projective topological groups of are of the same type. Finally it is shown that Gα is connected if and only if each Gα is connected.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1971
References
- 16
- Cited by