Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T17:46:55.185Z Has data issue: false hasContentIssue false

The fixed point property for some uniformly nonoctahedral Banach spaces

Published online by Cambridge University Press:  17 April 2009

A. Jiménez-Melado
Affiliation:
Depto. Análisis MatemáticoUniversidad de MálagaFacultad de Ciencias, 29071 Malaga, Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Roughly speaking, we show that a Banach space X has the fixed point property for nonexpansive mappings whenever X has the WORTH property and the unit sphere of X does not contain a triangle with sides of length larger than 2.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Aksoy, A.G. and Khamsi, M.A., Nonstandard methods in fixed point theory, Universitext (Springer-Verlag, Berlin, Heidelberg, New York, 1990).Google Scholar
[2]Bernal, J. and Sullivan, F., ‘Multi-dimensional volumes, super-reflexivity and normal structure in Banach space’, Illinois J. Math. 27 (1983), 501513.CrossRefGoogle Scholar
[3]Falset, J. García, ‘Fixed point property in Banach spaces whose characteristic of convexity is less than 2’, J. Austral. Math. Soc. 54 (1993), 169173.CrossRefGoogle Scholar
[4]Goebel, K. and Kirk, W.A., Topics in metric fixed point theory (Cambridge Univ. Press, Cambridge, 1990).CrossRefGoogle Scholar
[5]James, R.C., ‘A nonreflexive Banach space that is uniformly nonoctahedral’, Israel J. Math. 18 (1974), 145155.Google Scholar
[6]Jiménez-Melado, A. and Lloréns-Fuster, E., ‘The fixed point property for some uniformly nonsquare Banach spaces’, Boll. Un. Mat. Ital. A. (7) 10 (1996), 587595.Google Scholar
[7]Kirk, W.A., ‘A fixed point theorem for mappings which do not increase distances’, Amer. Math. Monthly 72 (1965), 10041006.CrossRefGoogle Scholar
[8]Lin, P.K., ‘Unconditional bases and fixed points of nonexpansive mappings’, Pacific J. Math. 116 (1985), 6976.Google Scholar
[9]Prus, S., ‘Multidimensional uniform smoothness in Banach spaces’, in Recent advances on metric fixed point theory, (Benavides, Tomas Dominguez, Editor) (Univ. Sevilla, Sevilla, 1996), pp. 111136.Google Scholar
[10]Sims, B., ‘Orthogonality and fixed points of nonexpansive maps’, Proc. Centre Math. Anal. Austral. Nat. Univ. 20 (1988), 178186.Google Scholar
[11]Sims, B., ‘A class of spaces with weak normal structure’, Bull. Austral. Math. Soc. 50 (1994), 523528.CrossRefGoogle Scholar
[12]Sullivan, F., ‘A generalization of uniformly rotund Banach spaces’, Canad. J. Math. 31 (1979), 628636.CrossRefGoogle Scholar