Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T03:52:12.106Z Has data issue: false hasContentIssue false

The fixed point property and normal structure for some B-convex Banach spaces

Published online by Cambridge University Press:  17 April 2009

Jesús García-Falset
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Doctor Moliner 50, 46100 Burjasot, Valencia, Spain
Enrique Llorens-Fuster
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Doctor Moliner 50, 46100 Burjasot, Valencia, Spain
Eva M. Mazcuñán-Navarro
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Doctor Moliner 50, 46100 Burjasot, Valencia, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a sufficient condition for normal structure more general than the well known ɛ0(X) < 1. Moreover we obtain sufficient conditions for the fixed point property for some B-convex Banach spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Beauzamy, B., ‘Banach-Saks properties and spreading models’, Math. Scand. 44 (1979), 357384.CrossRefGoogle Scholar
[2]Falset, J. García, ‘Basis and fixed points for nonexpansive mappings’, Rad. Mat. 8 (1992), 6775.Google Scholar
[3]Falset, J. García, ‘Fixed point property in Banach spaces whose characteristic of convexity is less than 2’, J. Austral. Math. Soc 54 (1993), 169173.CrossRefGoogle Scholar
[4]García-Falset, J., Jiménez-Melado, A. and Lloréns-Fuster, E., ‘Measures of noncompactness and normal structure in Banach spaces’, Studia Math. 110 (1994), 18.CrossRefGoogle Scholar
[5]Giesy, D. P., ‘B-convexity and reflexivity’, Israel J. Math. 15 (1973), 430436.CrossRefGoogle Scholar
[6]Giesy, D. P. and James, R. C., ‘Uniformly non-l (1) and B-convex Banach spaces’, Studia Math. 48 (1973), 6169.CrossRefGoogle Scholar
[7]Goebel, K. and Kirk, W. A., Topics in metric fixed point theory, Cambridge Stud. Adv. Math. v28 (Cambridge, 1990).CrossRefGoogle Scholar
[8]Melado, A. Jiménez, ‘The fixed point property for some uniformly nonoctahedral Banach spaces’, Bull. Austral. Math. Soc. 59 (1999), 361367.CrossRefGoogle Scholar
[9]Rosenthal, H. P., ‘Weakly independent sequences and the Banach-Saks property’,(Proceedings of the Durham Symposium on the relations between infinite-dimensional and finite-dimensional convexity.Durham-July, 1975, p.26).Google Scholar
[10]Sims, B., ‘Fixed points of nonexpansive maps on weak and weak*-compact sets’, (Queen's Univ. of Kingston Lecture notes, 1982).Google Scholar
[11]Sims, B., ‘Orthogonality and fixed points of nonexpansive maps’, Proc. Centre Math. Anal. Austral. Nat. Univ. 20 (1988), 178186.Google Scholar
[12]Sims, B., ‘A class of spaces with weak normal structure’, Bull. Austral. Math. Soc. 49 (1994), 523528.CrossRefGoogle Scholar