Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T05:38:15.668Z Has data issue: false hasContentIssue false

Fatou-Julia theory on transcendental semigroups

Published online by Cambridge University Press:  17 April 2009

Kin-Keung Poon
Affiliation:
Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we shall study the dynamics on transcendental semigroups. Several properties of Fatou and Julia sets of transcendental semigroups will be explored. Moreover, we shall investigate some properties of Abelian transcendental semigroups and wandering domains of transcendental semigroups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Baker, I. N., ‘Wandering domains in the iteration of entire functions’, Proc. London. Math. Soc. (3) 49 (1984), 563576.CrossRefGoogle Scholar
[2]Baker, I. N., Kotus, J. and Lu, Y., ‘Iterates of meromorphic functions I’, Ergodic Theory Dynamical Systems 11 (1991), 241248.CrossRefGoogle Scholar
[3]Baker, I. N., Kotus, J. and Lu, Y., ‘Iterates of meromorphic functions II: Examples of wandering domains’, J. Lond. Math. Soc. 42 (1990), 267278.CrossRefGoogle Scholar
[4]Baker, I. N., Kotus, J. and Lu, Y., ‘Iterates of meromorphic functions III: Preperiodic domains’, Ergodic Theory Dynamical Syatems 11 (1991), 603618.CrossRefGoogle Scholar
[5]Bergweiler, W., ‘Iteration of meromorphic functions’, Bull. Amer. Math. Soc 29 (1993), 151188.CrossRefGoogle Scholar
[6]Devaney, R. L. and Krych, M., ‘Dynamics of exp(z)’, Ergodic Theory Dynamical System 4 (1984), 3552.CrossRefGoogle Scholar
[7]Fatou, P., ‘Sur les equations fonctionelles’, Bull. Soc. Math. France 47 (1919), 161271; 48 (1920) 33–94.Google Scholar
[8]Fatou, P., ‘Sur l'iteration des fonctions transcendants entieres’, Acta. Math. 47 (1926), 337360.CrossRefGoogle Scholar
[9]Hayman, W. K., Meromorphic functions, Oxford Mathematical Monographs (Clarendon Press, Oxford, 1964).Google Scholar
[10]Hinkkanen, A. and Martin, G. J., ‘The dynamics of semigroups of rational functions I’, Proc. London. Math. Soc. (3) 73 (1996), 358384.CrossRefGoogle Scholar
[11]Hinkkanen, A. and Martin, G. J., ‘Julia sets of rational semigroups’, Math. Z. 222 (1996), 161169.CrossRefGoogle Scholar
[12]Julia, G., ‘Sur l'iteration des fonctions rationelles’, J. Math. Pures. Appl. 4 (1918), 47245.Google Scholar
[13]Julia, G., ‘Sur la permutabilite des fractions rationelles’, Ann. Sci. Ecole Norm. Sup. 39 (1922), 131215.CrossRefGoogle Scholar
[14]Peitgen, H. O. and Richter, P. H., The beauty of fractals (Springer Verlag, Berlin, Heidelberg, New York, 1986).CrossRefGoogle Scholar
[15]Siegel, C. L., ‘Iteration of analytic functions’, Ann. of Math. 43 (1942), 607612.CrossRefGoogle Scholar
[16]Sullivan, D., ‘Quasiconformal homeomorphisms and dynamics I: Solution of the Fatou-Julia problem on wandering domains’, Ann. of Math. 122 (1985), 401418.CrossRefGoogle Scholar
[17]Zalcman, L., ‘A heuristic principle in complex function theory’, Amer. Math. Monthly 82 (1975), 813817.CrossRefGoogle Scholar
[18]Zhou, W. M. and Ren, F. Y., ‘The Julia sets of the random iterated systems by some rational functions’, Chinese Sci. Bull. 37 (1992), 969971.Google Scholar
[19]Zhou, W. M. and Ren, F. Y., ‘The Julia sets of the random iterated systems by transcendental functions’, Chinese Sci. Bull. 38 (1993), 289290.Google Scholar