Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T08:53:42.873Z Has data issue: false hasContentIssue false

Farthest points in W*-compact sets

Published online by Cambridge University Press:  17 April 2009

R. Deville
Affiliation:
Equipe d'Analyse Fonctionelle, Université Paris VI, Paris, France.
V.E. Zizler
Affiliation:
Department of Mathematics, Faculty of Science, University of Alberta, Edmonton, Canada. T6G 2G1
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that while farthest points always exist in w* -compact sets in duals to Radon-Nikodym spaces, this is generally not the case in dual Radon-Nikodym spaces. We also show how to characterise weak compactness in terms of farthest points.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Asplund, E., ‘Farthest points in reflexive locally uniformly rotund Banach spaces’, Isreal J. Math. 4 (1966), 213216.CrossRefGoogle Scholar
[2]Asplund, E., ‘Fréchet differentiability of convex functions’, Acta Math. 121 (1968), 3147.CrossRefGoogle Scholar
[3]Bourgin, J., ‘Geometric aspects of convex sets with the Radon-Nikodym property’, in Lecture Notes in Mathematics: 993 (Springer-Verlag, New York, 1983).Google Scholar
[4]Collier, J.B., ‘The dual of a space with the Radon-Nikodym property’, Pacific J. Math. 64 (1976), 103106.CrossRefGoogle Scholar
[5]Diestel, J., ‘Geometry of Banach spaces—selected topics’, in Lecture Notes in Mathematics 485 (Springer-Verlag, New York, 1975).Google Scholar
[6]Edelstein, M., ‘Farthest points of sets in uniformly convex Banach spaces’, Israel J. Mat. 4 (1966), 171176.CrossRefGoogle Scholar
[7]Edelstein, M. and Lewis, J.E., ‘On exposed and farthest points in normed linear spaces’, J. Austral. Math. Soc. 12 (1971), 301308.CrossRefGoogle Scholar
[8]Godefroy, G. and Kalton, N., ‘The ball topology’ (to appear).Google Scholar
[9]Lau, K.S., ‘Farthest points in weakly compact sets’, Israel J. Math. 22 (1975), 168174.CrossRefGoogle Scholar
[10]Straszewicz, S., ‘Uber exponierte Punkte abgeschlossener Puntmengen’, Fund. Math. 24 (1935), 139143.CrossRefGoogle Scholar
[11]Zizler, V., ‘On some extremal problems in Banach spaces’, Math. Scand. 32 (1973), 214224.CrossRefGoogle Scholar