No CrossRef data available.
Article contents
Existence of solutions of nonlinear differential equations with deviating arguments
Published online by Cambridge University Press: 17 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove an existence theorem for nonlinear differential equations with deviating arguments and with implicit derivatives. The proof is based on the notion of measure of noncompactness and the Darbo fixed point theorem.
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 44 , Issue 3 , December 1991 , pp. 467 - 476
- Copyright
- Copyright © Australian Mathematical Society 1991
References
[1]Balachandran, K., ‘Existence of solution for nonlinear Volterra integral equation with deviating arguments’, J. Math. Phys. Sci. 23 (1989), 201–206.Google Scholar
[2]Balachandran, K. and Ilamaran, S., ‘An existence theorem for Volterra integral equation with deviating arguments’, J. Appl. Math, and Stochastic Analysis 3 (1990), 155–162.Google Scholar
[3]Balachandran, K. and Ilamaran, S., ‘Existence of solution for nonlinear Volterra integral equations’, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 179–184.CrossRefGoogle Scholar
[4]Banas, J., ‘On measures of noncompactness in Banach spaces’, Comment. Math. Univ. Carolin. 21 (1980), 131–143.Google Scholar
[5]Banas, J., ‘The existence and some properties of solutions of a differential equation with deviated argument’, Comment. Math. Univ. Carolin. 2 (1981), 525–536.Google Scholar
[6]Banas, J. and Goebel, K., Measures of noncompactness in Banach spaces: Lecture Notes in Pure and Applied Mathematics 60 (Marcel Dekker, Inc., New York and Basel, 1980).Google Scholar
[7]Burton, T.A., Volterra integral and differential equations (Academic Press, New York, 1983).Google Scholar
[8]Czerwik, S., ‘The existence of global solutions of a functional-differential equation’, Colloq. Math. 36 (1976), 121–125.CrossRefGoogle Scholar
[9]Driver, R.D., Ordinary and delay differential equation: Applied Math. Sciences 20, (Springer Verlag, Berlin, Heidelberg, New York, 1977).CrossRefGoogle Scholar
[10]Kuratowski, C., ‘Sur les espaces completes’, Fund. Math. 15 (1930), 301–309.CrossRefGoogle Scholar
You have
Access