Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T02:27:53.019Z Has data issue: false hasContentIssue false

Etude des interruptions dans l'algorithme de Jacobi–Perron

Published online by Cambridge University Press:  17 April 2009

Eugène Dubois
Affiliation:
Laboratoire de Mathématiques Nicolas Oresme, UMR CNRS n∘ 6139, Université Caen, 14032 Caen-Cedex, France e-mail: [email protected]
Ahmed Farhane
Affiliation:
Département de Mathématiques et Informatique, Faculté des Sciences et Techniques de SETTAT, Maroc, e-mail: [email protected]
Roger Paysant-Le Roux
Affiliation:
Laboratoire Nicolas ORESME, UMR CNRS n∘ 6139, Université de Caen14032 Caen-CedexFrance e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that in general the Jacobi–Perron algorithm (a multi-dimensional analogue of the continued fraction algorithm) may or might not acknowledge the dependence over ℚ of its arguments 1, α1,…, αn by truncating itself down to fewer arguments from some step onwards (if so, the algorithm is said to display an ‘interruption’). We show here that if n = 2 then 1, α1, α2 are linearly dependent over ℚ of and only if the Jacobi–Perron Algorithm displays an interruption. We give examples showing this is not so for any n ≥ 3.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Adam, B. and Rhin, G., ‘Algorithme des fractions continues et de Jacobi–Perron’, Bull. Aust. Math. Soc. 53 (1996), 341350.CrossRefGoogle Scholar
[2]Bernstein, L., The Jacobi Perron. Its theory and application, Lecture Notes in Mathematics 207 (Springer-Verlag, Berlin, Heidelberg, New York, 1971).CrossRefGoogle Scholar
[3]Dubois, E., ‘Thèse de 3ème cycle’, (Caen 1970), C.R. Acad. Sci. Paris (1971), 564566.Google Scholar
[4]Dubois, E., Fahrane, A. and Paysant-Le Roux, R., ‘The Jacobi–Perron algorithm and Pisot numbers’, Acta Arith. (to appear).Google Scholar
[5]Dubois, E. and Paysant-Le Roux, R., ‘Une application des nombres de Pisot à l'algorithme de Jacobi–Perron’, Monatsh. Math. 98 (1984), 145155.Google Scholar
[6]Jacobi, C.G., ‘Allgemeine Theorie der kettenbruchaehnlichen Algorithmen, in welchen pede Zahl ans drei varhergehenden gebildlt wird’, J.f.d. reine Angew. Math. 69 (1869), 2964.Google Scholar
[7]Paysant-Le Roux, R., ‘Thèse de 3ème’ cycle, (Caen 1970), C.R. Acad. Sci. Paris (1971), 649652.Google Scholar
[8]Perron, O., ‘Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus’, Math. Ann. 64 (1907), 176.CrossRefGoogle Scholar
[9]Schweiger, F., The metrical theory of Jacobi–Perron Algorithm, Lecture Note in Mathematics 334 (Springer Verlag, Berlin, New York, 1973).CrossRefGoogle Scholar