Published online by Cambridge University Press: 17 April 2009
Consider the class of stochastic processes with stationary independent increments and finite variances; notable members are brownian motion, and the Poisson process. Now for Xt any member of this class of processes, we wish to find the optimum sampling points of Xt, for predicting . This design question is shown to be directly related to finding sampling points of Yt for estimating β in the regression equation, Yt = β + Xt. Since processes with stationary independent increments have linear drift, the regression equation for Yt is the first type of departure we might look for; namely quadratic drift, and unchanged covariance structure.