Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T04:18:06.880Z Has data issue: false hasContentIssue false

Estimates by polynomials

Published online by Cambridge University Press:  17 April 2009

R.M. Aron
Affiliation:
Department of MathematicsKent State UniversityKent Oh 44242United States of America
Y.S. Choi
Affiliation:
Department of MathematicsPohang University of Science and TechnologyPohangKorea 790
J.G. Llavona
Affiliation:
Departamento de Análisis MatemáticoUniversidad Complutense de Madrid28040 MadridSpain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider the following possible properties which a Banach space X may have: (P): If (xi) and (yj) are bounded sequences in X such that for all n ≥ 1 and for every continuous n-homogeneous polynomial P on X, P(xj) − (yj) → 0, then Q(xjyj) → 0 for all m ≥ 1 and for every continuous m-homogeneous polynomial Q on X.

(RP): If (xj)and (yj) are bounded sequences in X such that for all n ≥ 1 and for every continuous n-homogeneous polynomial P on X, P(xjyj) → 0, then Q(xj) − Q(yj) → 0 for all m ≥ 1 and for every continuous m-homogeneous polynimial Q on X. We study properties (P) and (RP) and their relation with the Schur proqerty, Dunford-Pettis property, Λ, and others. Several applications of these properties are given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Alencar, R., Aron, R.M. and Dineen, S., ‘A reflexive space of holomorphic functions in infinitely many variables’, Proc. Amer. Math. Soc. 90 (1984), 407411.CrossRefGoogle Scholar
[2]Aron, R.M. and Galindo, P., ‘Weakly compact multilinear mappings’, (preprint).Google Scholar
[3]Aron, R.M. and Prolla, J.B., ‘Polynomial approximation of differentiable functions on Banach spaces’, J. Reine Agnew. Math. 313 (1980), 195216.Google Scholar
[4]Carne, T., Cole, B. and Gamelin, T., ‘A uniform algebra of analytic functions on a Banach space’, Trans. Amer. Math. Soc. 314 (1989), 639659.CrossRefGoogle Scholar
[5]Castillo, J.F. and Sanchez, C., ‘Weakly-p-compact, p-Banach-Saks and super-reflexive Banach spaces’, J. Math. Anal. Appl. 185 (1994), 256261.CrossRefGoogle Scholar
[6]Choi, Y.S. and Kim, S.G., ‘Polynomial properties of Banach spaces’, J. Math. Anal. Appl. 190 (1995), 203210.CrossRefGoogle Scholar
[7]Davie, A.M. and Gamelin, T.W., ‘A theorem on polynomial-star approximation’, Proc. Amer. Math. Soc. 106 (1989), 351358.CrossRefGoogle Scholar
[8]Diestel, J., ‘A survey of results related to the Dunford-Pettis property’, in Contemp. Math. 2 (Amer. Math. Soc., Providence, R.I., 1980), pp. 1560.Google Scholar
[9]Diestel, J., Geometry of Banach spaces, Lecture Notes in Mathematics 485 (Springer-Verlag, Berlin, Heidelberg, New York, 1975).CrossRefGoogle Scholar
[10]Van Dulst, D., Reflexive and super-reflexive spaces, Math. Centre Tracts 102 (Amsterdam, 1982).Google Scholar
[11]Dunford, N. and Schwartz, J.T., Linear Operators, Part I, General Theory (J. Wiley, New York, 1964).Google Scholar
[12]Farmer, J.D., ‘Polynomial reflexivity in Banach spaces’, Israel J. Math. 87 (1994), 257273.CrossRefGoogle Scholar
[13]Farmer, J.D. and Johnson, W.B., ‘Polynomial Schur and polynomial Dunford-Pettis properties’, in Proc. Intern. Research Workshop on Banach Space Theory (Mérida, Venezuela), (Johnson, W.B. and Lin, B.L., Editors) (Amer. Math. Soc., Providence, RI, 1993), pp. 95105.Google Scholar
[14]Jaramillo, J.A. and Prieto, A., ‘Weak-polynomial convergence on a Banach space’, Proc. Amer. Math. Soc. 118 (1993), 463468.CrossRefGoogle Scholar
[15]Josefson, B., ‘Bounding subsets of ℓ (A)’, J. Math. Pures Appl. 57 (1978), 397421.Google Scholar
[16]Grothendieck, A., ‘Sur les applications linéaires faiblement compactes d'espaces du type C(K)’, Canad. J. Math. 5 (1953), 129173.CrossRefGoogle Scholar
[17]Pelczynski, A., ‘A property of multilinear operations’, Studia Math. 16 (1957), 173182.CrossRefGoogle Scholar
[18]Petunin, Y.I. and Savkin, V.I., ‘Convergence generated by analytic functions’, Ukranian. Math. J. 40 (1988), 676679.CrossRefGoogle Scholar
[19]Rosenthal, H.P., ‘Some recent discoveries in the isomorphic theory of Banach spaces’, Bull. Amer. Math. Soc. 84 (1980), 803831.CrossRefGoogle Scholar
[20]Ryan, R.A., ‘Dunford-Pettis properties’, Bull. Acad. Polon. Sci. Math. 27 (1979), 373379.Google Scholar