Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T08:57:29.865Z Has data issue: false hasContentIssue false

Error estimates for the approximation of functions by certain interpolation polynomials

Published online by Cambridge University Press:  17 April 2009

Stuart John Goodenough
Affiliation:
Department of Mathematics, Statistics and Computer Science, University of Newcastle, Newcastle, N.S.W. 2308, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD theses
Copyright
Copyright © Australian Mathematical Society 1986

References

[1]Bojanic, R., “A note on the precision of interpolation by Hermite-Fejér polynomials”, Proceedings of the Conference on constructive theory of functions,Budapest 1969, 6976 (Akadémiai Kiadó, Budapest, 1972).Google Scholar
[2]Fejér, L., “Ueber Interpolation”, Nachr.Akad.Wiss.Göttingen Math.-Phys. K1. (1916), 6691.Google Scholar
[3]Goodenough, S.J., “A link between Lebesgue constants and Hermite-Fejér interpolation”, Bull.Austral.Math.Soc. 33 (1986), 207218.CrossRefGoogle Scholar
[4]Goodenough, S.J., “The complete asymptotic expansion for the degree of approximation of Lipschitz functions by Hermite-Fejér interpolation polynomials”, J.Approx.Theory 44 (1985), 325342.CrossRefGoogle Scholar
[5]Goodenough, S.J. and Mills, T.M., “The asymptotic behaviour of certain interpolation polynomials”, J.Approx.Theory 28 (1980), 309316.CrossRefGoogle Scholar
[6]Goodenough, S.J. and Mills, T.M., “Asymptotic estimates for quasi-Hermite-Fejér interpolation”, Acta Math. Acad. Sci. Hungar. 38 (1981), 151155.CrossRefGoogle Scholar
[7]Goodenough, S.J. and Mills, T.M., “On interpolation polynomials of the Hermite-Fejér type II”, Bull.Austral.Math.Soc. 23 (1981), 283291.CrossRefGoogle Scholar