Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T18:34:59.600Z Has data issue: false hasContentIssue false

Erdös-Turán mean convergence theorem for Lagrange interpolation at Lobatto points

Published online by Cambridge University Press:  17 April 2009

William E. Smith
Affiliation:
Department of Applied Mathematics, University of New South Wales, kensington 2033, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let {Qn} denote the orthogonal polynomials associated with the weight function p on [−1, 1] and let denote the zeros of (1−x2) Qn (x). Consider the Lagrange polynomials which interpolate a given continuous function at these points. It is shown that, as n → ∞, the Lagrange polynomial converges to the function in the W weighted mean square sense, where w (x) = ρ(x)\(1−x2), provided that W is integrable. An application to numerical product integration is noted.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1986

References

[1]Davis, P. J. and Rabinowitz, P., Methodes of Numerical Intergration (Academic Press, New York, 1975).Google Scholar
[2]Erdös, P. and Turán, P., “On interpolation I. Quadrature- and mean-convergence in the Lagrange-interpolation”, Ann. of Math. 38 (1937), 142155.Google Scholar
[3]Johnson, L. W. and Riess, R. D., Numerical Analysis, (Addison-Wesley Publishing Co., Reading Mass., 2nd edition, 1982).Google Scholar
[4]Krylov, V. I., Approximate calculation of integrals, Macmillan, New York, English translation by Stroud, A. H., 1962).Google Scholar
[5]Kuetz, M., “A note on mean convergence of Lagrange interpolation”, J. Approx. Theory, 35 (1982), 7782.CrossRefGoogle Scholar
[6]Nevai, P., “Lagrange interpolation at zeros of orthogonal polynomials”, Approximation Theory II, pp. 163201) Lorentz, G. C., Chui, C. K. and Shumaker, L. L., Eds.) (Academic Press Inc., New York, 1976).Google Scholar
[7]Nevai, P., “Mean convergence of Lagrange interpolation. IIITrans. Amer. Math. Soc. 282 (1984), 669697.CrossRefGoogle Scholar
[8]Sloan, I. H. and Smith, W. E., “Product integration with the Clenshaw-Curtis and related points. Convergence properties”, Numer. Math. 30 (1978), 415428.CrossRefGoogle Scholar
[9]Sloan, I. H. and Smith, W. E., “Properties of interpolatory product integration rules”, SIAM J. Numer. Anal. 19 (1982) 427442.CrossRefGoogle Scholar
[10]Varma, A. K. and Vértesi, P., “Some Erdös-Feldheim type theorems on mean convergence of Lagrange interpolation”, J. Math. Anal. Appl. 91 (1983), 6879.CrossRefGoogle Scholar
[11]Vértesi, P., “Remarks on Lagrange interpolation”, Studia Sci. Math. Hungar. 15 (1980), 277281.Google Scholar
[12]Vértesi, P., “On Lagrange interpolation”, Period. Math. Hungar. 12 (1981), 103112.CrossRefGoogle Scholar
[13]Zygmund, A., Trigonometric Series, vol 2, (Cambridge University Press, London, 1968).Google Scholar