Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T18:33:53.056Z Has data issue: false hasContentIssue false

Equations of motion in Poincaré-Četaev variables with constraint multipliers

Published online by Cambridge University Press:  17 April 2009

Q.K. Ghori
Affiliation:
Department of Mathematics, University of Islamabad, Islamabad, Pakistan.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suslev's constraint multipliers are used to derive the equations of motion of dynamical systems (holonomic or nonholonomic) in the form of Poincaré-Četaev equations and in the canonical form. For holonomic systems defined by redundant variables, the constraint multipliers occuring in the canonical equations are determined and a modification of the Hamilton-Jacobi Theorem for integrating the canonical equations is presented.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1976

References

[1]Ghori, Q.K., “Hamilton-Jacobi theorem for nonlinear nonholonomic dynamical systems”, Z. Angew. Math. Mech. 50 (1970), 563564.Google Scholar
[2]Ghori, Q.K., Hussain, M., “Poincaré's equations for nonholonomic dynamical systems”, Z. Angew. Math. Mech. 53 (1973), 391396.CrossRefGoogle Scholar
[3]Ghori, Q.K. and Hussain, M., “Generalisation of the Hamilton-Jacobi theorem”, Z. Angew. Math. Phys. 25 (1974), 536540.CrossRefGoogle Scholar
[4]Шахайдарова, П.Ш. [Šahaĭdarova, P.Š.], “Об одной форме уравнений движения механических систем в избыточных координатах” [On a form of the equations of motion of mechanical systems in redundant coordinates], Taškent. Gos. Univ. Naučn. Trudy Vyp. 275 (1966), 2225.Google ScholarPubMed
[5]Шульгин, М.Ф. [Šul'gin, M.F.], “О некоторых дифференциальных уравнениях аналитической динамики и их интегрировании” [On various differential equations of analytical dynamics and their integration], Trudy Sredneaziat. Gos. Univ. 144 (1958).Google ScholarPubMed
[6]Шульгин, М.Ф. [Šul'gin, M.F.], “К теории уравнений динамики с импульсивными множителями связей” [Theory of equations of dynamics with impulse factors of constraints], Taškent. Gos. Univ. Naučn. Trudy Vyp. 397 (1971), 3648.Google Scholar
[7]Суслов, Г.К. [Suslov, G.K.], Теоретическая механнка [Theoretical mechanics] (Fizmatgiz, Moscow, 1946).Google ScholarPubMed