Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T02:21:59.778Z Has data issue: false hasContentIssue false

Ensuring a finite group is supersoluble

Published online by Cambridge University Press:  17 April 2009

R. A. Bryce
Affiliation:
Mathematical Sciences Institute, The Australian National University, Canberra, ACT 0200, Australia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A special case of the main result is the following. Let G be a finite, non-supersoluble group in which from arbitrary subsets X, Y of cardinality n we can always find xX and yY generating a supersoluble subgroup. Then the order of G is bounded by a function of n. This result is a finite version of one line of development of B.H. Neumann's well-known and much generalised result of 1976 on infinite groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Brady, J.M., Bryce, R.A. and Cossey, J., ‘On certain abelian-by-nilpotent varieties of groups’, Bull. Austral. Math. Soc. 1 (1969), 403416.CrossRefGoogle Scholar
[2]Carter, R.W., Fischer, B. and Hawkes, T.O., ‘Extreme classes of finite soluble groups’, J. Algebra 9 (1968), 285313.CrossRefGoogle Scholar
[3]Doerk, K. and Hawkes, T., Finite soluble groups (de Gruyter, Berlin, New York, 1992).CrossRefGoogle Scholar
[4]Endimioni, G., ‘Groups covered by finitely many nilpotent subgroups’, Bull. Austral. Math. Soc. 50 (1994), 459464.CrossRefGoogle Scholar
[5]Groves, J.R.J., ‘A conjecture of Lennox and Wiegold concerning supersoluble groups’, J. Austral. Math. Soc. Ser. 35 (1983), 218220.CrossRefGoogle Scholar
[6]Lennox, J.C., ‘Bigenetic properties of finitely generated-(hyper-abelian-by-finite) groups’, J. Austral. Math. Soc. 16 (1973), 309315.CrossRefGoogle Scholar
[7]Lennox, J.C. and Wiegold, J., ‘Extensions of a problem of Paul Erdös on groups’, J. Austral. Math. Soc. Ser. A 31 (1981), 459463.CrossRefGoogle Scholar
[8]Longobardi, P., Mai, M. and Rheumtulla, A.H., ‘Infinite groups in a given variety and Ramsey's theorem’, Comm. Algebra 20 (1992), 127139.CrossRefGoogle Scholar
[9]Neumann, B.H., ‘Groups covered by finitely many cosets’, Publ. Math. Debrecen 3 (1954), 227242.CrossRefGoogle Scholar
[10]Neumann, B.H., ‘A problem of Paul Erdös on groups’, J. Austral. Math. Soc. Ser. A 21 (1976), 467472.CrossRefGoogle Scholar
[11]Neumann, B.H., ‘Ensuring commutativity of finite groups’, J. Austral. Math. Soc. 71 (2001), 233234.CrossRefGoogle Scholar
[12]Spiezia, L.S., ‘Infinite locally soluble k-Engel groups’, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 3 (1992), 177183.Google Scholar
[13]Tomkinson, M.J., ‘Hypercentre-by-finite groups’, Publ. Math. Debrecen 40 (1992), 313321.CrossRefGoogle Scholar
[14]Trabelsi, N., ‘Characterisation of nilpotent-by-finite groups’, Bull. Austral. Math. Soc. 61 (2000), 3338.CrossRefGoogle Scholar
[15]Trabelsi, N., ‘Soluble groups with many 2-generator torsion-by-nilpotent subgroups’, Publ. Math. Debrecen 67 (2005), 93102.CrossRefGoogle Scholar