Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T02:21:39.240Z Has data issue: false hasContentIssue false

Enlargeable Banach-Lie algebras and free topological groups

Published online by Cambridge University Press:  17 April 2009

Vladimir G. Pestov
Affiliation:
Department of Mathematics, Victoria University of Wellington, Wellington, New Zealand E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterise in terms of free topological groups those Banach-Lie algebras with finite-dimensional centre coming from Lie groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Ado, I.D., ‘The representation of Lie algebras by matrices’, Amer. Math. Soc. Transl. 19 (1962), 308327.Google Scholar
[2]Arhangel'skiĭ, A.V., ‘Classes of topological groups’, Russian Math. Surveys 36 (1981), 151174.CrossRefGoogle Scholar
[3]Bourbaki, N., Lie groups and Lie algebras (Springer-Verlag, Berlin, Heidelberg, New York, 1989).Google Scholar
[4]Cartan, E., La topologie des groupes de Lie (Hermann, Paris, 1936).Google Scholar
[5]Comfort, W.W., Hofmann, K.H. and Remus, D., ‘A survey on topological groups and semigroups’, in General Topology — Recent Developments (North-Holland, Amsterdam, 1992) (to appear).Google Scholar
[6]Eells, J. Jr., ‘A setting for global analysis’, Bull. Amer. Math. Soc. 72 (1966), 751807.CrossRefGoogle Scholar
[7]Fuks, D.B., Cohomology of infinite-dimensional Lie algebras, Translated from Russian by Sosinski, A.B. (Consultants Bureau, New York, London, 1986).CrossRefGoogle Scholar
[8]Katz, E., ‘Free topological groups and principal fiber bundles’, Duke Math. J. 42 (1975), 8390.CrossRefGoogle Scholar
[9]Katz, E. and Morris, S.A., ‘Free Abelian topological groups on countable CW-complexes’, Bull. Austral. Math. Soc. 41 (1990), 451456.CrossRefGoogle Scholar
[10]Kobayashi, O., Yoshioka, A., Maeda, Y. and Omori, H., ‘The theory of infinite-dimensional Lie groups and its applications’, Acta Appl. Math. 3 (1985), 71106.CrossRefGoogle Scholar
[11]Mal'cev, A.I., ‘Sur les groupes topologiques locaux et complets’, C.R. (Doklady) Acad. Sci. URSS (N.S.) 32 (1941), 606608.Google Scholar
[12]Mack, J., Morris, S.A. and Ordman, E.T., ‘Free topological groups and the projective dimension of a locally compact abelian group’, Proc. Amer. Math. Soc. 40 (1973), 399402.CrossRefGoogle Scholar
[13]Lane, S. Mac, Categories for the working mathematician, Graduate Texts in Mathematics 5 (Springer-Verlag, Berlin, Heidelberg, New York, 1971).CrossRefGoogle Scholar
[14]Milnor, J., ‘Remarks on infinite-dimensional Lie groups’, in Relativité, groupes et topologie II. Lea Houches, Session XL (Elsevier Sci. Publ., Amsterdam, 1984), pp. 10071058.Google Scholar
[15]Pestov, V.G., ‘Fermeture nonstandard des algèbres et groupes de Lie banachiques’, C.R. Acad. Sci. Paris Ser. 1 Math. 306 (1988), 643645.Google Scholar
[16]Pestov, V.G., ‘Nonstandard hulls of Banach-Lie groups and algebras’, Nova Journal of Algebras and Geometries (to appear).Google Scholar
[17]Pestov, V.G., ‘Free Banach-Lie algebras, couniversal Banach-Lie groups, and more’, Pacific J. Math. 157 (1993), 137144.CrossRefGoogle Scholar
[18]Postnikov, M.M., Lie groups and Lie algebras, Lectures in geometry. Semester V, Translated from Russian by Shokurov, V. (Mir, Moscow, 1986).Google Scholar
[19]Robinson, A., ‘Germs’, in Applications of model theory to algebra, analysis and probability (Holt, Rinehart and Winston, New York, 1969).Google Scholar
[20]Świerczkowski, S., ‘Embedding theorems for local analytic groups’, Ada Math. 114 (1965), 207235.Google Scholar
[21]Świerczkowski, S., ‘The path-functor on Banach-Lie algebras’, Indag. Math. 33 (1971), 235239.CrossRefGoogle Scholar
[22]Świerczkowski, S., ‘On the cohomology of local groups’, J. Austral. Math. Soc. 12 (1971), 249255.CrossRefGoogle Scholar
[23]Świerczkowski, S., ‘Cohomology of group germs and Lie algebras’, Pacific J. Math. 39 (1971), 471482.CrossRefGoogle Scholar
[24]van Est, W.T. and Korthagen, T.J., ‘Non-enlargible Lie algebras’, Nederl. Akad. Wetensch. Proc. A26 (1964), 1531.CrossRefGoogle Scholar
[25]van Est, W.T. and Świerczkowski, S., ‘The path functor and faithful representability of Banach Lie algebras’, J. Austral. Math. Soc. 16 (1973), 471482.CrossRefGoogle Scholar
[26]Zarichnyĭ, M.M., ‘Free topological groups of absolute neighbourhood retracts and infinite-dimensional manifolds’, Soviet Math. Dokl. 26 (1982), 367371.Google Scholar