Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T19:02:26.271Z Has data issue: false hasContentIssue false

Elementary observations on 2-categorical limits

Published online by Cambridge University Press:  17 April 2009

G.M. Kelly
Affiliation:
Pure Mathematics DepartmentUniversity of SydneyN.S.W. 2006Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With a view to further applications, we give a self-contained account of indexed limits for 2-categories, including necessary and sufficient conditions for 2-categorical completeness. Many important 2-categories fail to be complete but do admit a wide class of limits. Accordingly, we introduce a variety of particular 2-categorical limits of practical importance, and show that certain of these suffice for the existence of indexed lax- and pseudo-limits. Other important 2-categories fail to admit even pseudo-limits, but do admit the weaker bilimits; we end by discussing these.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1]Auderset, C., ‘Adjonctions et monades au niveau des 2-catégories’, Cahiers de Topologie et Géom. Diff. 15 (1974), 320.Google Scholar
[2]Bénabou, J., ‘Introduction to bicategories’, in Lecture Notes in Math. 47, pp. 177 (Springer-Verlag, Berlin, Heidelberg, New York, 1967).Google Scholar
[3]Bird, G.J., Limits of Locally-presentable Categories (Ph.D thesis, Univ. of Sydney, 1984).Google Scholar
[4]Bird, G.J., Kelly, G.M., Power, A.J. and Street, R., ‘Flexible limits for 2-categories’, J. Pure Appl. Algebra (to appear).Google Scholar
[5]Blackwell, R., Kelly, G.M. and Power, J., ‘Two-dimensional monad theory’, J. Pure Appl Algebra (to appear).Google Scholar
[6]Borceux, F. and Kelly, G.M., ‘A notion of limit for enriched categories’, Bull. Austral. Math. Soc. 12 (1975), 4972.CrossRefGoogle Scholar
[7]Gray, J.W., ‘Formal Category Theory: Adjointness for 2-Categories’: Lecture Notes in Math. 391 (Springer-Verlag, Berlin, Heidelberg, New York).Google Scholar
[8]Kelly, G.M., ‘On clubs and doctrines’, in Lecture Notes in Math. 420 (Springer-Verlag, Berlin, Heidelberg, New York, 1974). pp. 181256.Google Scholar
[9]Kelly, G.M., Basic Concepts of Enriched Category Theory (London Math Soc. Lecture Notes Series 64, Cambridge Univ. Press, 1982).Google Scholar
[10]Kelly, G.M., ‘Structures defined by finite limits in the enriched context I’, Cahiers de Topologie et Géom. Diff 23 (1982), 342.Google Scholar
[11]Kelly, G.M., ‘Equivalences in 2-categories, birepresentations, and biadjoints’, (in preparation).Google Scholar
[12]Kelly, G.M. and Street, R., ‘Review of the elements of 2-categories’, in Lecture Notes in Math. 420 (Springer-Verlag, Berlin, Heidelberg, New York, 1974). pp. 75103.Google Scholar
[13]Street, R., ‘Elementary Cosmoi I’, in Lecture Notes in Math 420 (Springer-Verlag, Berlin, Heidelberg, New York, 1974). pp. 134180.Google Scholar
[14]Street, R., ‘Limits indexed by category-valued 2-functor’, J. Pure Appl. Algebra 8 (1976), 149181.CrossRefGoogle Scholar
[15]Street, R., ‘Fibrations in bicategories’, Cahiers de Topologie et Géom. Diff. 21 (1980), 111160.Google Scholar
[16]Street, R., ‘Corrigendum to “Fibrations in bicategories”‘, Cahiers de Topologie et Géom. Diff. Catégoriques 28 (1987), 5356.Google Scholar