No CrossRef data available.
Article contents
The dyadic trace and odd weight computations for Siegel modular cusp forms
Published online by Cambridge University Press: 17 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We define the concept of a special positive matrix. We use the dyadic trace to prove the result that dim for odd k ≤ 13 and that dim ≤ 4.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2001
References
[1]Freitag, E., Siegelsche modulfunktionen, Grundlehren der Mathematische Wissenschaften 254 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).CrossRefGoogle Scholar
[2]Klingen, H., Introductory lectures on Siegel modular forms, Cambridge Studies in Advanced Mathematics 20 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
[3]Nipp, G., Quaternary quadratic forms, computer generated tables (Springer-Verlag, Berlin, Heidelbrg, New York).Google Scholar
[4]Poor, C. and Yuen, D., ‘Dimensions of spaces of Siegel modular forms of low weight in degree four’, Bull. Austral. Math. Soc. 54 (1996), 309–315.CrossRefGoogle Scholar
[5]Poor, C. and Yuen, D., ‘Linear dependence among Siegel modular forms’, Math. Ann. 318 (2000), 205–234.CrossRefGoogle Scholar
You have
Access